製鉄・製鋼・溶解炉に戻る

高炉,熱風炉

0件の登録があります。

高炉(こうろ、blast furnace)は製鉄所の主要な設備で、鉄鉱石を熱処理して、鉄を取り出すための炉。鉄溶鉱炉(てつようこうろ)と呼ばれることもある(「溶」は「熔」の常用漢字による書き換え)。大型のものでは高さ 100 メートルを超え、製鉄所のシンボル的存在となっている。鉱石から銑鉄を取りだす高炉、その銑鉄を鋼鉄に処理する転炉、生産された鉄を圧延や連続鋳造で製品加工する設備を持つ、銑鋼一貫製鉄所のみが高炉を所有している。このような大規模施設を持つ鉄鋼会社は高炉メーカーと呼ばれている。

高炉による銑鉄生産

高炉の頂部から鉄鉱石による金属原料とコークスなどの燃料を兼ねる還元材、不純物除去の目的で石灰石を入れ、下部側面から加熱された空気を吹き入れてコークスを燃焼させる。頂部から投入される原料等はあらかじめ簡単に焼かれて固塊状に加工されており、炉内での高温ガスの上方への流路と原料等の流動性が確保されている。高炉内部ではコークスの炭素が鉄から酸素を奪って熱と一酸化炭素、二酸化炭素を生じる。この反応が熱源となり鉄鉱石を溶かし、炉の上部から下部に沈降してゆく過程で必要な反応が連続的に行なわれ下部に到達する頃には燃焼温度は最高となり、炉の底部で高温液体状の銑鉄が得られる。不純物を多く含む高温液体状のスラグは銑鉄の上に層を成してたまる。銑鉄とスラグは底部側面から適時、自然流動によって取り出される。高炉頂部からは一酸化炭素、二酸化炭素等を多く含む高温の高炉ガスがパイプによって取り出され、粉塵等がサイクロンで除去された後、随時切り替えられる複数組の熱風炉の1つへと送られる。高温ガスは熱風炉内のレンガ等を加熱した後、煙突より排気される。十分に加熱された熱風炉の1つが排気経路とは別に切り替えられて、外気より取り込まれた冷風が熱風炉により加熱される。熱くなった空気は炉下部の側面より粉砕された微粉末炭と共に圧入され、炉内を上昇する内に酸素が燃焼に寄与する。これらの流れにより一連のガスサイクルを形成する。高炉にはコークス炉や鉄鉱石焼結炉が常に併設され、投入原料の事前加工が行なわれている。一度、火が入れられた高炉は常に稼動されて、数年に一度の程度の炉内壁の修理等の時以外に停止されることはない。高炉で作られた銑鉄は保温効率と移送の利便性を兼ね備えた「トーピードカー」(混銑車)と呼ばれる細長いタンク車両に流しこまれて、次の工程へと送られる。送られた銑鉄は溶銑予備処理を施した後、転炉へ入れられ、鋼鉄へと変換される。

主な反応

炭素(コークス)の燃焼によって、一酸化炭素、二酸化炭素が生成する。
C + 1 2 O 2 CO {\displaystyle {\ce {C + {\frac {1}{2}}O2 -> CO}}}

C + O 2 CO 2 {\displaystyle {\ce {C + O2 -> CO_2}}}
CO 2 + C     2 CO {\displaystyle {\ce {CO2 + C \ <-> \ 2CO}}}
生成した一酸化炭素によって一連の鉄の還元反応が起こる。これをまとめて書くと以下の式となる。
Fe 2 O 3 + 3 CO 2 Fe + 3 CO 2 {\displaystyle {\ce {Fe2O3 + 3CO -> 2Fe + 3CO2}}}

ただし実際には、還元反応は以下のような3段階のプロセスを経る。
Fe 2 O 3 Fe 3 O 4 FeO Fe {\displaystyle {\ce {Fe2O3 -> Fe_3O_4 -> FeO -> Fe}}}

この反応過程は、温度 T による。即ち、320°C < T < 620°C
3 Fe 2 O 3 + CO 2 Fe 3 O 4 + CO 2 {\displaystyle {\ce {3Fe_2O3 + CO -> 2Fe3O4 + CO2}}}
620°C < T < 950°C
Fe 3 O 4 + CO 3 FeO + CO 2 {\displaystyle {\ce {Fe_3O4 + CO -> 3FeO + CO2}}}
950°C < T
FeO + CO Fe + CO 2 {\displaystyle {\ce {FeO + CO -> Fe + CO2}}}

不純物の除去

原料鉱石には SiO2 などの不純物が存在する。これを取り除くために高炉中に石灰石(主成分 CaCO3)を入れ、以下の反応により粘性が小さく除去しやすいスラグを生成する。スラグは CaSiO3 などの組成を持つ。
SiO 2 + CaCO 3 CaSiO 3 + CO 2 {\displaystyle {\ce {SiO2 + CaCO3 -> CaSiO3 + CO2}}}
この反応のプロセスは以下のとおりである。
CaCO 3 CaO + CO 2 {\displaystyle {\ce {CaCO3 -> CaO + CO2}}}
CaO + SiO 2 CaSiO 3 {\displaystyle {\ce {CaO + SiO2 -> CaSiO3}}}

歴史

鉄は、石を積んだような低温しか出せない原始的なブルマリー炉(Bloomery)でも海綿鉄などを鉄鉱石から半固体状で取り出し、鍛冶屋が鎚で鍛えれば器具にすることができる。古代の鉄器はそうして作られた。しかし高温で完全に溶解させ、液状にした銑鉄は、鋳型に流し込んで自由な形に造型することができた。そのためには高温を得るための、水車を動力にする強力な鞴を装備した高炉が必要であった。現在知られている最も古い高炉は、中国の前漢時代(紀元前1世紀頃)のものとみられる。しかし、紀元前5世紀頃と見られる鋳鉄が中国で発見されており、それよりも古い高炉があった可能性がある。初期の高炉は、内壁が粘土で作られており、リンを含む鉱石を使用していたと見られる。西洋における最初の高炉は、スウェーデンで1150年から1350年の間に作られたらしい。この高炉が、独自の技術で作られたのか、モンゴルからもたらされた技術によって作られたのかははっきりしていない。高炉は中世を通じ、ヨーロッパ中の鉄鉱石のある地域へと伝播していったが、のち高炉で製造した銑鉄を精錬して鋼鉄とする技術が考案され、製鉄における高炉の役割は不動のものになった。初期の高炉は大量の木炭を消費した。そのため製鉄地域では、造船や建築など他の用途に使う木が払底するほど森林破壊の問題が常についてまわり、製鉄のため木を切ることを禁止する法律が繰り返し出された。そこで木炭に代わる、石炭を使う高炉が研究された。石炭は硫黄や燐などの不純物を含むため、そのままでは使用できなかったが1709年、エイブラハム・ダービーが石炭をコークスにすることでこの問題を解決する。その結果、鉄の生産量は大幅に増大し、蒸気機関の発明と相まって、18世紀の産業革命の基盤となった。日本における最初の近代高炉は、安政元年(1854年)7月に、薩摩藩による集成館事業によって完成した。島津斉彬は反射炉で作られるたたら製鉄で生産した和鉄が、大砲鋳造に不向きなことを知っており、いち早く熔鉱炉建設に踏み切った。2004年7月現在、世界で高炉のある製鉄所は、ミッタル・スチールポスコほか日本において高炉のある製鉄所は、日本製鉄 - 7(北日本(室蘭)・東日本(鹿島・君津)・名古屋・関西(和歌山)・九州(戸畑地区・大分)JFEスチール - 4(東日本製鉄所(京浜地区・千葉地区)・西日本製鉄所(倉敷地区・福山地区))神戸製鋼所 - 1(加古川)の合計12か所で、2022年9月現在21基の高炉が稼働している。

高炉の耐火煉瓦の劣化状況の把握

耐火煉瓦の劣化状況を調べるためにかつては耐火煉瓦内にコバルト60を入れて製品への含有量から劣化状況を間接的に把握していた。炉底の耐火煉瓦の劣化状況など、稼働中の溶鉱炉の内部を外部から透視することは長年できなかったが、現在では分解能は低いものの、溶鉱炉内の様子をミュー粒子で透視するミュオグラフィの開発が産学連携で進められる。コバルト60を用いたことから現代の鉄鋼製品には極微量のコバルト60が環境に拡散された。無論、人体や生態系に影響を及ぼすものではないものの、微量放射能検出の際には障害となるため、太平洋戦争前に金属鉄となった鉄が環境放射能の遮蔽材として使われる。日本における代表例が戦艦陸奥の船体引き上げで得られた陸奥鉄である。

日本の高炉の詳細

脚注

関連項目

製鉄所高炉メーカー

外部リンク

石井邦宜, 八木順一郎、「高炉製銑プロセスの基礎研究概況と今後の展開」『鉄と鋼』 2001年 87巻 5号 p.207-220, doi:10.2355/tetsutohagane1955.87.5_207『高炉』 - コトバンク

もっと見る 閉じる

高炉http://ja.wikipedia.org/)より引用

公開中の特集