1/59ページ
カタログの表紙 カタログの表紙 カタログの表紙
カタログの表紙

このカタログをダウンロードして
すべてを見る

ダウンロード(961.2Kb)

ADA4254 Zero Drift, High Voltage, Low Power

製品カタログ

Programmable Gain Instrumentation Amplifier

このカタログについて

ドキュメント名 ADA4254 Zero Drift, High Voltage, Low Power
ドキュメント種別 製品カタログ
ファイルサイズ 961.2Kb
取り扱い企業 マウザー・エレクトロニクス (この企業の取り扱いカタログ一覧)

この企業の関連カタログ

この企業の関連カタログの表紙
LT6015/LT6016/LT6017 3.2MHz, 0.8V/µs Low Power, Over-The-Top Precision Op Amps
製品カタログ

マウザー・エレクトロニクス

この企業の関連カタログの表紙
AD5412/AD5422 Single Channel, 12-/16-Bit, Serial Input, Current
製品カタログ

マウザー・エレクトロニクス

この企業の関連カタログの表紙
ADuM140D_140E_141D_141E_142D_142E 3.0 kV RMS/3.75 kV RMS Quad Digital Isolators
製品カタログ

マウザー・エレクトロニクス

このカタログの内容

Page1

FEATURES、APPLICATIONS、GENERAL DESCRIPTION、SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM、COMPANION PRODUCTS

Zero Drift, High Voltage, Low Power, Programmable Gain Instrumentation Amplifier Data Sheet ADA4254 FEATURES SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM Optimized for ADC synchronization VDDH Low power: 22 mW (±12 V supplies) EXCITATION 12 binary gain steps from 1/16 V/V to 128 V/V CURRENTS ADA4254 IOUT_HV 3 scaling gains: 1 V/V, 1.25 V/V, and 1.375 V/V IOUT_LV AVDD ±60 V protected input multiplexer Excellent dc precision + ROUT Low input offset voltage: ±14 μV maximum – +IN1 – –OUT Low input offset voltage drift: ±0.08 μV/°C maximum + –IN1 Gain calibration via ROM RIN VOCM +IN2 Low gain drift: ±1 ppm/°C maximum + –IN2 High CMRR: 116 dB minimum, G = 1 V/V – +OUT – Low input bias current: ±1.5 nA maximum + High input impedance ROUT Integrated input EMI filtering AVSS Wide input supply range: ±5 V to ±28 V DIGITAL CONTROL DVDD Dedicated output amplifier supplies 7 × GPIO SPI INTERFACE DVSS 7 GPIO ports with special functions Sequential chip select mode VSSH External multiplexer control Figure 1. Excitation current sources SPI port with checksum (CRC) support Internal fault detection The input multiplexer provides ±60 V protection to the high Wire break test currents impedance inputs of the amplifier, while providing the On-chip test multiplexer capability to switch between two input sources. In addition, 28-lead, 5 mm × 5 mm LFCSP, 24-lead TSSOP integrated electromagnetic interference (EMI) filters block Specified temperature range: −40°C to +105°C APPLICATIONS harsh RF noise from the sensitive inputs of the amplifier. Universal process control front ends Various safety features on the ADA4254 detect both internal Data acquisition systems and external faults. The serial port interface (SPI) supports Test and measurement systems cyclical redundancy check (CRC) error detection to ensure GENERAL DESCRIPTION robust communication. These safety features ease system safety integrity level (SIL) certification. The ADA4254 is a zero drift, high voltage, low power programmable gain instrumentation amplifier (PGIA) designed Seven general-purpose input/output (GPIO) pins, which can be for process control and industrial applications. The ADA4254 configured to provide various special functions, are included in features 12 binary weighted gains ranging from 1/16 V/V to the ADA4254. An excitation current source output is available 128 V/V and three scaling gain options of 1 V/V, 1.25 V/V, and to bias sensors such as resistance temperature detectors (RTDs). 1.375 V/V, resulting in 36 possible gain settings. The power The ADA4254 is specified over the −40°C to +105°C temperature consumption of the ADA4254 is a mere 22 mW, making the range and is offered in a compact 5 mm × 5 mm, 28-lead LFCSP device an excellent choice for industrial systems that demand and a 24-lead TSSOP. precision, robustness, and low power. COMPANION PRODUCTS The zero drift amplifier topology of the ADA4254 self calibrates ADCs: AD4007, AD7768, AD7175-2 dc errors and low frequency 1/f noise, achieving excellent dc ADC Drivers: ADA4945-1, LTC6363 precision over the entire specified temperature range. This high Voltage References: ADR4550, ADR3450, LT6656 level of precision maximizes dynamic range and greatly reduces calibration requirements in many applications. Rev. B Document Feedback Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. No license is granted by implication or otherwise under any patent or patent rights of Analog Tel: 781.329.4700 ©2019–2020 Analog Devices, Inc. All rights reserved. Devices. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com ±60V OVERVOLTAGE PROTECTED MUX EMI FILTER 15741-001
Page2

TABLE OF CONTENTS

ADA4254 Data Sheet TABLE OF CONTENTS Features .............................................................................................. 1  SPI Read/Write Error Detection .............................................. 35  Applications ...................................................................................... 1  SPI Command Length Error Detection .................................. 35  General Description ......................................................................... 1  Applications Information ............................................................. 36  Simplified Functional Block Diagram ........................................... 1  Input and Output Offset Voltage and Noise .......................... 36  Companion Products ....................................................................... 1  ADC Clock Synchronization .................................................... 36  Revision History ............................................................................... 3  Programmable Logic Controller (PLC) Voltage/Current Specifications .................................................................................... 4  Input ............................................................................................. 37  Timing Specifications .................................................................. 8  3-Wire RTD With Current Excitation .................................... 38  Absolute Maximum Ratings ........................................................... 9  High Rail Current Sensing ........................................................ 39  Thermal Resistance ...................................................................... 9  Register Summary .......................................................................... 40  ESD Caution.................................................................................. 9  Register Details ............................................................................... 42  Pin Configurations and Function Descriptions ......................... 10  GAIN_MUX Register Details ................................................... 42  Typical Performance Characteristics ........................................... 11  Software Reset Register (Reset) Details ................................... 43  Theory of Operation ...................................................................... 23  Clock Synchronization Configuration Register (SYNC_CFG) Details .......................................................................................... 44  Programmable Gain Instrumentation Amplifier .................. 23  Digital Error Register (DIGITAL_ERR) Details .................... 45  Input Multiplexer ....................................................................... 24  Analog Error Register (ANALOG_ERR) Details .................. 46  EMI Reduction and Internal EMI Filter ................................. 24  GPIO Data Register (GPIO_DATA) Details ......................... 47  Input Amplifier ........................................................................... 25  Internal Mux Control Register (INPUT_MUX) Details ...... 48  Output Amplifier........................................................................ 25  Wire Break Detect Register (WB_DETECT) Details ............ 49  Power Supplies ............................................................................ 26  GPIO Direction Register (GPIO_DIR) Details ..................... 50  ESD Map ...................................................................................... 26  Sequential Chip Select Register (SCS) Details ........................ 50  Output Ripple Calibration Configuration .............................. 27  Analog Error Mask Register (ANALOG_ERR_DIS) Details ... 51  General-Purpose Inputs/Outputs (GPIOs) ............................ 27  Digital Error Mask Register (DIGITAL_ERR_DIS) Details ..... 52  Excitation Currents .................................................................... 27  Special Function Configuration Register (SF_CFG) Details .... 53  External Clock Synchronization .............................................. 28  Error Configuration Register ................................................... 54  Sequential Chip Select (SCS) .................................................... 28  Test Multiplexer Register (TEST_MUX) Details .................. 55  Gain Error Calibration .............................................................. 30  Excitation Current Configuration Register Wire Break Detection ................................................................ 31  (EX_CURRENT_CFG) Details ................................................ 56  Test Multiplexer ......................................................................... 32  Gain Calibration Registers (GAIN_CALx) Details ............... 57  External Mux Control ................................................................ 32  Trigger Calibration Register (TRIG_CAL) Details ............... 58  Digital Interface .............................................................................. 33  Master Clock Count Register (M_CLK_CNT) Details ......... 58  SPI Interface ................................................................................ 33  DIE Revision Identification Register (DIE_REV_ID) Details Accessing the ADA4254 Register Map ................................... 33  ....................................................................................................... 58  Checksum Protection ................................................................ 33  Device Identification Registers (PART_ID) Details ............. 58  CRC Calculation ......................................................................... 35  Outline Dimensions ....................................................................... 59  Memory Map Checksum Protection ....................................... 35  Ordering Guide .......................................................................... 59  Read-Only Memory (ROM) Checksum Protection .............. 35  Rev. B | Page 2 of 59
Page3

REVISION HISTORY

Data Sheet ADA4254 REVISION HISTORY 6/2020—Rev. A to Rev. B 11/2019—Rev. 0 to Rev. A Changes to Figure 10 ............................................................................ 11 Changes to Features Section and General Description Section ....... 1 Changes to Figure 23 ............................................................................ 13 Changes to Static Power Dissipation Parameter, Table 1 ........... 7 Changes to Figure 37 ............................................................................ 16 Changes to 3-Wire RTD With Current Excitation Section ...... 38 Change to Input Multiplexer Section ............................................... 24 Changes to External Clock Synchronization Section ....................... 28 Change to Wire Break Detection Section ........................................... 31 11/2019—Revision 0: Initial Version Changes to Figure 100 ............................................................................ 36 Change to 3-Wire RTD with Current Excitation Section ............... 38 Change to Table 21 .................................................................................. 49 Change to Bits[7:0], DIE_REV_ID[7:0]—Die Revision Identification Number Section .......................................................... 58 Rev. B | Page 3 of 59
Page4

SPECIFICATIONS

ADA4254 Data Sheet SPECIFICATIONS TA = 25°C, VDDH = 28 V, VSSH = −28 V, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, DVSS = 0 V, VOCM = AVDD/2, and no load, unless otherwise noted. Table 1. Parameter Test Conditions/Comments Min Typ Max Unit OFFSET VOLTAGE Total offset, referred to input (RTI) = VOSI + VOSO Gain Differential Offset Voltage Input Offset Voltage (VOSI) ±3 ±14 μV Output Offset Voltage (VOSO) ±40 ±125 μV Differential Offset Voltage TA = −40°C to +105°C1, total offset drift, Drift RTI = VOSI/T + VOSO /T Gain VOSI/T ±0.03 ±0.08 μV/°C VOSO/T ±0.98 ±2.5 μV/°C Differential Offset Voltage vs. VDDH − VSSH = 10 V to 56 V VDDH and VSSH (Power Supply Rejection Ratio (PSRR)), RTI Gain (G) = 1/16 V/V 80 90 dB G = 1 V/V 110 120 dB G = 128 V/V 140 154 dB Differential Offset Voltage vs. AVDD − AVSS = 2.7 V to 5.5 V AVDD (PSRR), RTI G = 1/16 V/V 66 76 dB G = 1 V/V 90 100 dB G = 128 V/V 118 136 dB Differential Offset vs. External Clock frequency = 0.8 MHz to 1.2 MHz Clock Frequency, RTI G = 1/16 V/V ±0.2 μV/kHz G = 1 V/V ±0.1 μV/kHz G = 128 V/V ±0.002 μV/kHz COMMON–MODE REJECTION +IN = −IN = −25 V to +25 V, scaling gain = 1 V/V RATIO (CMRR), RTI CMRR to 60 Hz G = 1/16 V/V 92 102 dB G = 1 V/V 116 126 dB G = 128 V/V 140 150 dB G = 1/16 TA = −40°C to +105°C1 88 dB G = 1 TA = −40°C to +105°C1 112 dB G = 128 TA = −40°C to +105°C1 136 dB Rev. B | Page 4 of 59
Page5

Data Sheet ADA4254 Parameter Test Conditions/Comments Min Typ Max Unit GAIN Output voltage (V ) = 8.5 V p-p2 OUT Input Gain Range 1/16 to 128 V/V Output Gain Range 1, 1.25, 1.375 V/V Gain Error Before Calibration All Gains <±0.06 ±0.12 % Using Calibration All Gains <±0.01 ±0.025 % Coefficient All Gain Values Except as TA = −40°C to +105°C1 <±0.3 ±1 ppm/°C Follows: G = 1/16 V/V, All Scaling T = −40°C to +105°C1 A ±0.8 ±1.5 ppm/°C Gains G = 32 V/V, 64 V/V, All TA = −40°C to +105°C1 ±0.4 ±1.5 ppm/°C Scaling Gains G = 128 V/V, Scaling Gains TA = −40°C to +105°C1 ±0.6 ±2 ppm/°C 1 V/V, 1.25 V/V G = 128 V/V, Scaling Gain TA = −40°C to +105°C1 ±0.7 ±2.5 ppm/°C 1.375 V/V Nonlinearity All gains except 32 V/V, 64 V/V and 128 V/V2, 3 5 15 ppm G = 32 V/V 7.5 ppm G = 64 V/V 12 ppm G = 128 V/V 15 ppm NOISE 2 Total noise, RTI = e 2  eno  ni  Gain   Voltage Noise, 1 kHz, RTI Input Noise (eni) 17 nV/√Hz Output Noise (eno) 253 nV/√Hz 0.1 Hz to 10 Hz, RTI G = 1/16 V/V 95 μV p-p G = 1 V/V 5.75 μV p-p G = 128 V/V 330 nV p-p 0.01 Hz to 10 Hz, RTI G = 1/16 V/V 100 μV p-p G = 1 V/V 6.8 μV p-p G = 128 V/V 395 nV p-p Current Noise 10 Hz 100 fA/√Hz 0.1 Hz to 10 Hz 3.1 pA p-p 0.01 Hz to 10 Hz 4 pA p-p INPUT CHARACTERISTICS Input Bias Current ±0.45 ±1.5 nA TA = −40°C to +85°C1 ±4 nA TA = −40°C to +105°C1 ±14 nA Input Offset Current ±0.2 ±1.3 nA TA = −40°C to +85°C1 ±2.5 nA TA = −40°C to +105°C1 ±3.5 nA Input Impedance Common mode >1||11 GΩ||pF Differential >1||4.7 GΩ||pF Input Operating Voltage Range Guaranteed by CMRR VSSH + 3 VDDH − 3 V MUX_OVER_VOLT_ERR Positive Threshold VDDH − 0.9 V Negative Threshold VSSH + 0.9 V INPUT_ERR/GAIN_RST Positive Threshold VDDH − 1.5 V Negative Threshold VSSH + 1.5 V Rev. B | Page 5 of 59
Page6

ADA4254 Data Sheet Parameter Test Conditions/Comments Min Typ Max Unit ANALOG OUTPUTS Output Voltage Swing from AVDD = 5 V, load resistor (RL) = 2.49 kΩ to 2.5 V AVSS + 0.06 AVDD − V Each Rail 0.08 AVDD = 2.7 V, RL = 1.8 kΩ to 1.35 V AVSS + 0.05 AVDD − V 0.06 Capacitive Load Drive 500 pF Short-Circuit Current To 2.5 V, G = 1.375, AVDD = 2.7 V to 5 V 3.5 11 25 mA OUTPUT_ERR Positive Threshold AVDD − 0.03 V Negative Threshold AVSS + 0.03 V VOCM DYNAMIC PERFORMANCE −3 dB Bandwidth 2.3 MHz Slew Rate 1.9 V/μs Voltage Noise Frequency = 1 kHz 160 nV/√Hz Gain 1 V/V VOCM INPUT CHARACTERISTICS Input Voltage Range AVSS AVDD − 1 V Input Resistance 10 GΩ Common Mode Offset Voltage 20 μV Common Mode Offset 2.5 μV/°C Voltage Drift Input Bias Current 500 pA DYNAMIC RESPONSE Small Signal ±3 dB Bandwidth G = 1/16 V/V 15 kHz G = 1/8 V/V 28 kHz G = 1/4 V/V 67 kHz G = 1/2 V/V 138 kHz G = 1 V/V 1800 kHz G = 2 V/V 513 kHz G = 4 V/V 341 kHz G = 8 V/V 319 kHz G = 16 V/V 297 kHz G = 32 V/V 275 kHz G = 64 V/V 257 kHz G = 128 V/V 209 kHz Settling Time 0.01% VOUT = 8 V p-p G = 1 V/V 10 μs G = 8 V/V 8 μs G = 128 V/V 5 μs Settling Time 0.0015% (16-Bit) VOUT = 8 V p-p G = 1 V/V 18 μs G = 8 V/V 15 μs G = 128 V/V 15 μs Slew Rate VOUT = 8 V p-p2 G = 1/16 V/V 0.06 V/μs G = 1 V/V 0.8 V/μs G = 128 V/V 3.1 V/μs Rev. B | Page 6 of 59
Page7

Data Sheet ADA4254 Parameter Test Conditions/Comments Min Typ Max Unit THD VOUT = 8 V p-p at frequency = 1 kHz G = 1 V/V −104 dB G = 8 V/V −96 dB G = 128 V/V −80 dB Input Overload Recovery Time Input voltage (VIN) = 56 V p-p 40 μs Output Overload Recovery G = 1 V/V, VIN = 10 V p-p 6 μs Time EXCITATION CURRENT SOURCES (IOUT_LV/IOUT_HV) Output Current Range 100 1500 μA Initial Tolerance ±3 ±10 % Drift TA = −40°C to +105°C ±200 ppm/°C Current Matching ±3 ±8 % Drift Matching TA = −40°C to +105°C ±50 ppm/°C WIRE BREAK CURRENTS Output Current Range 0.25 16 μA Impedance Threshold (VDDH − 4)/I 4 WB Ω Initial Tolerance ±12 % Drift TA = −40°C to +105°C ±250 ppm/°C DIGITAL INPUTS Low (VINL) 0 0.8 V High (VINH) 0.6 × DVDD DVDD V Digital Input Pin Capacitance 5 pF DIGITAL OUTPUT Low (VOL) Sinking 4 mA 0.7 V High (VOH) Sourcing 2 mA DVDD − 0.8 V INTERNAL/EXTERNAL CLOCK Internal Clock Frequency 0.8 1 1.2 MHz Duty Cycle 50 % Internal Clock Divider Range 1 32 MHz/ MHz POWER SUPPLY VDDH − VSSH 10 56 V AVDD − AVSS 2.7 5 V DVDD − DVSS 2.7 5 V IVDDH 600 765 μA IVSSH 780 985 μA IDVDD DVDD = 3 V 150 205 μA IAVDD 980 1305 μA Static Power Dissipation DVDD = 3 V, VSSH = −28 V, VDHH = 28 V 44 56 mW DVDD = 3 V, VSSH = −15 V, VDDH = 15 V 26 34 mW DVDD = 3 V, VSSH = −12 V, VDDH = 12 V 22 28 mW 1 Guaranteed by design. These specifications are not production tested but are supported by characterization data at the initial product release. 2 For gains less than 1/2, a smaller output swing is used. 3 Only G = 1 V/V is production tested. 4 IWB means wire break current. Rev. B | Page 7 of 59
Page8

TIMING SPECIFICATIONS、Timing Diagrams

ADA4254 Data Sheet TIMING SPECIFICATIONS VDDH = 28 V, VSSH = −28 V, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, DVSS = 0 V, VOCM = AVDD/2 V. Table 2. Digital Values and SPI Timing Specifications Parameter Test Conditions/Comments Min Typ Max Unit Maximum Clock Rate (SCLK) 5 MHz Minimum Pulse Width (SCLK) High tPWH 75 ns Low tPWL 75 ns SDI/SDO to SCLK Setup Time tDS 10 ns SDI/SDO to SCLK Hold Time tDH 10 ns Data Valid, SDO to SCLK tDV 50 ns Setup Time, CS to SCLK tDCS 30 ns Timing Diagrams INSTRUCTION CYCLE DATA TRANSFER CYCLE CS SCLK SDIO R/W A6 A5 A4 A3 A2 A1 A0 D7N D6N D5N D30 D20 D10 D00 SDO D7N D6N D5N D30 D20 D10 D00 Figure 2. SPI Timing Diagram, MSB First tDCS tSCLK CS tPWH tPWL SCLK tDS tDH SDI INSTRUCTION BIT 7 INSTRUCTION BIT 6 Figure 3. SPI Register Write Timing Diagram CS SCLK tDV SDI, DATA BIT n DATA BIT n – 1 SDO Figure 4. SPI Register Read Timing Diagram Rev. B | Page 8 of 59 15741-004 15741-003 15741-002
Page9

ABSOLUTE MAXIMUM RATINGS、THERMAL RESISTANCE、ESD CAUTION

Data Sheet ADA4254 ABSOLUTE MAXIMUM RATINGS Table 3. THERMAL RESISTANCE Parameter Rating Thermal performance is directly linked to printed circuit board VDDH VSSH – 0.3 V to VSSH + 60 V (PCB) design and operating environment. Careful attention to AVDD AVSS – 0.3 V to AVSS + 5.5 V PCB thermal design is required. DVDD DVSS – 0.3 V to DVSS + 5.5 V θJA is the natural convection, junction to ambient, thermal AVSS or DVSS VSSH – 0.3 V to VSSH + 30 V resistance measured in a one cubic foot sealed enclosure. θJC Voltage VDDH – 30 V to VDDH + 0.3 V is the junction to case thermal resistance. Current ±10 mA Input Voltage (+IN1, −IN1, +IN2, VSSH − 60 V to VSSH + 60 V Table 4. Thermal Resistance or −IN2) Package Type1 θJA θJC Unit Differential Input Voltage 60 V CP-28-10 36.9 1.9 °C/W Between Any Two Amplifier RU-24 64.8 14.11 °C/W Inputs (+IN1, −IN1, +IN2, or −IN2) 1 The thermal resistance values specified in Table 4 are simulated based on −OUT, +OUT Short-Circuit Indefinite JEDEC specifications (unless specified otherwise) and must be used in compliance with JESD51-12. Current VOCM Refer to the ESD Map section for a schematic of ESD diodes Voltage AVSS – 0.3 V to AVDD + 0.3 V and paths. Current ±10 mA ESD CAUTION Digital Inputs/Outputs (SPI and DVSS – 0.3 V to DVDD + 0.3 V GPIO), Voltage Digital Inputs (SPI and GPIO), ±10 mA Current IOUT_LV Voltage AVSS – 0.3 V to AVDD + 0.3 V Current ±10 mA IOUT_HV Voltage VSSH – 0.3 V to VDDH + 0.3 V Current ±10 mA Operating Temperature Range −40°C to +125°C Specified Temperature Range −40°C to +105°C Maximum Junction Temperature +150°C Storage Temperature Range −65°C to +150°C Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability. Rev. B | Page 9 of 59
Page10

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

ADA4254 Data Sheet PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS –OUT 1 24 +OUT VOCM 2 23 GPIO0 AVSS 3 22 GPIO1 AVDD 4 21 GPIO2 +IN1 1 21 VOCM IOUT_LV 5 20 GPIO3 –IN1 2 20 –OUT +IN2 3 19 +OUT IOUT_HV 6 ADA4254 19 GPIO4 ADA4254 TOP VIEW –IN2 4 18 GPIO0 VDDH 7 18 CS DNC 5 TOP VIEW 17 GPIO1 EPAD VSSH 8 17 SCLK DVSS 6 16 GPIO2 +IN1 9 16 SDI DVDD 7 15 GPIO3 –IN1 10 15 SDO +IN2 11 14 DVDD –IN2 12 13 DVSS NOTES 1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN. 2. CONNECT THE EXPOSED PAD (EPAD) TO VSSH. Figure 5. 28-Lead LFCSP Pin Configuration Figure 6. 24-Lead TSSOP Pin Configuration Table 5. Pin Function Descriptions Mnemonic LFCSP Pin No. TSSOP Pin No. Description +IN1 1 9 Channel 1 Positive Input. −IN1 2 10 Channel 1 Negative Input. +IN2 3 11 Channel 2 Positive Input. −IN2 4 12 Channel 2 Negative Input. DNC 5, 28 Not applicable Do Not Connect. Do not connect to this pin. DVSS 6 13 Negative Digital Supply Voltage. DVDD 7 14 Positive Digital Supply Voltage. SDO 8 15 SPI Serial Data Output. SDI 9 16 SPI Serial Data Input. SCLK 10 17 SPI Serial Clock Input. CS 11 18 SPI Chip Select Input. GPIO6 12 Not applicable GPIO6/SCS6. GPIO5 13 Not applicable GPIO5/SCS5. GPIO4 14 19 GPIO4/SCS4/Clock Input or Output. GPIO3 15 20 GPIO3/SCS3/Fault Interrupt Output. GPIO2 16 21 GPIO2/SCS2/Calibration Busy Out. GPIO1 17 22 GPIO1/SCS1/External Multiplexer Control 1. GPIO0 18 23 GPIO0/SCS0/External Multiplexer Control 0. +OUT 19 24 Positive Output. −OUT 20 1 Negative Output. VOCM 21 2 Output Amplifier Common-Mode Voltage Input. This pin is high impedance and is not internally biased. AVSS 22 3 Output Amplifier Negative Supply Voltage. AVDD 23 4 Output Amplifier Positive Supply Voltage. IOUT_LV 24 5 Low Voltage Excitation Current Source Output. IOUT_HV 25 6 High Voltage Excitation Current Source Output. VDDH 26 7 Positive High Voltage Supply. VSSH 27 8 Negative High Voltage Supply. EPAD Not applicable Exposed Pad. Connect the exposed pad (EPAD) to VSSH. Rev. B | Page 10 of 59 SDO 8 28 DNC SDI 9 27 VSSH SCLK 10 26 VDDH CS 11 25 IOUT_HV GPIO6 12 24 IOUT_LV GPIO5 13 23 AVDD GPIO4 14 22 AVSS 15741-006 15741-007
Page11

TYPICAL PERFORMANCE CHARACTERISTICS

Data Sheet ADA4254 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDDH = 28 V, VSSH = −28 V, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, DVSS = 0 V, VOCM = AVDD/2, and no load, unless otherwise noted. 50 50 N = 120 UNITS N = 120 UNITS 45 µ = 0.24µV 45 µ = –11.4nV/°C σ = 2.4µV σ = 15.7nV/°C 40 40 TA = –40°C TO +105°C 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 –10 –8 –6 –4 –2 0 2 4 6 8 10 –80 –64 –48 –32 –16 0 16 32 48 64 80 OFFSET VOLTAGE (µV) OFFSET VOLTAGE DRIFT (nV/°C) Figure 7. Offset Voltage Distribution, RTI (Gain = 128 V/V) Figure 10. Offset Voltage Drift Distribution, RTI (Gain = 128 V/V) 50 50 N = 120 UNITS N = 120 UNITS 45 µ = –19.2µV 45 µ = –0.29µV/°C σ = 22.2µV σ = 0.43µV/°C 40 T = –40°C TO +105°C 40 A 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 –100 –80 –60 –40 –20 0 20 40 60 80 100 –2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 OFFSET VOLTAGE (µV) OFFSET VOLTAGE DRIFT (µV/°C) Figure 8. Offset Voltage Distribution, RTI (Gain = 1 V/V) Figure 11. Offset Voltage Drift Distribution, RTI (Gain = 1 V/V) 50 50 N = 120 UNITS N = 120 UNITS 45 µ = –0.34mV 45 µ = –4.84µV/°C σ = 0.36mV σ = 6.9µV/°C 40 40 TA = –40°C TO +105°C 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 –2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 0 –30 –24 –18 –12 –6 0 6 12 18 24 30 OFFSET VOLTAGE (mV) OFFSET VOLTAGE DRIFT (µV/°C) Figure 9. Offset Voltage Distribution, RTI (Gain = 1/16 V/V) Figure 12. Offset Voltage Drift Distribution, RTI (Gain = 1/16 V/V) Rev. B | Page 11 of 59 PERCENT OF UNITS (%) PERCENT OF UNITS (%) PERCENT OF UNITS (%) 15741-127 15741-126 15741-128 PERCENT OF UNITS (%) PERCENT OF UNITS (%) PERCENT OF UNITS (%) 15741-130 15741-129 15741-131
Page12

ADA4254 Data Sheet 0.15 0.15 N = 80 UNITS N = 40 UNITS 1 VOUT (ALL GAINS EXCEPT 1/16V/V) = 8V p-p VOUT (ALL GAINS EXCEPT /16V/V) = 8V p-p 1 V 1 OUT ( /16V/V) = 2V p-p VOUT ( /16V/V) = 2V p-p 0.10 0.10 0.05 0.05 0 0 –0.05 –0.05 –0.10 –0.10 –0.15 –0.15 1/ 1 16 / 1/ 1/ 1 11/ 13 8 4 2 4 /8 2 4 8 16 32 64 128 1/ 1/ 1/ 1 1 3 16 8 4 /2 1 1 /4 1 /8 2 4 8 16 32 64 128 GAIN SETTING (V/V) GAIN SETTING (V/V) Figure 13. Gain Error vs. Gain Setting Figure 16. Gain Error vs. Gain Setting Using Calibration Coefficients 0.20 0.20 N = 80 UNITS N = 40 UNITS VOUT (ALL GAINS EXCEPT 1/16V/V) = 8V p-p VOUT (ALL GAINS EXCEPT 1/16V/V) = 8V p-p 0.15 VOUT (1/16V/V) = 2V p-p 0.15 VOUT (1/16V/V) = 2V p-p 0.10 0.10 0.05 0.05 0 0 –0.05 –0.05 –0.10 –0.10 –0.15 –0.15 –0.20 –0.20 1/ 1 16 / 1 8 / 1 4 /2 1 11/ 13 4 /8 2 4 8 16 32 64 128 1/16 1/8 1/4 1/2 1 11/4 13/8 2 4 8 16 32 64 128 GAIN SETTING (V/V) GAIN SETTING (V/V) Figure 14. Gain Error Distribution vs. Gain Setting Figure 17. Gain Error Distribution vs. Gain Setting Using Calibration Coefficients 3 0.20 N = 80 UNITS N = 80 UNITS V 1 1 OUT (ALL GAINS EXCEPT /16V/V) = 8V p-p VOUT (ALL GAINS EXCEPT /16V/V) = 8V p-p V (1 0.15 OUT /16V/V) = 2V p-p VOUT (1/16V/V) = 2V p-p 2 TA = –40°C TO +105°C 0.10 1 0.05 0 0 –0.05 –1 –0.10 –2 –0.15 –3 1/ 1 1 16 /8 / 1 4 / 1 3 2 1 1 /4 1 /8 2 4 8 16 32 64 128 –0.20 GAIN SETTING (V/V) GAIN SETTING CHANGE (V/V) Figure 15. Gain Error Drift vs. Gain Setting Figure 18. Gain Error Deviation Between Sequential Gain Settings Rev. B | Page 12 of 59 GAIN ERROR (%) GAIN ERROR DRIFT MEAN ±3σ (ppm/°C) GAIN ERROR MEAN ±3σ (%) 15741-016 15741-013 15741-015 GAIN ERROR (%) GAIN ERROR MEAN ±3σ (%) GAIN EROR MEAN ±3σ (%) 1/16 TO 1/8 1/ TO 18 /4 1/4 TO 1/2 1/2 TO 1 1 TO 11/4 11/4 TO 13/8 13/8 TO 2 2 TO 4 4 TO 8 8 TO 16 16 TO 32 32 TO 64 64 TO 128 15741-017 15741-218 15741-217
Page13

Data Sheet ADA4254 6 10 GAIN = 1V/V GAIN = 1V/V 5 9 4 8 3 7 2 1 6 0 5 –1 4 –2 3 –3 2 –4 –5 1 –6 0 –5 –4 –3 –2 –1 0 1 2 3 4 5 –40 –20 0 20 40 60 80 100 120 DIFFERENTIAL OUTPUT VOLTAGE (V) TEMPERATURE (°C) Figure 19. Gain Nonlinearity Figure 22. Gain Nonlinearity vs. Temperature 160 140 GAIN = 128V/V 140 120 GAIN = 1V/V 120 100 GAIN = 1/16V/V 100 80 80 60 60 40 40 20 GAIN = 128V/V GAIN = 1V/V 20 0 GAIN = 1/16V/V 0 –20 1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 20. CMRR vs. Frequency Figure 23. CMRR vs. Frequency with 1 kΩ Imbalance 50 100 N = 4356 UNITS N = 120 UNITS 45 µ = –10.2nV/V 80 TA = –40°C TO +105°C σ = 7.9nV/V 40 60 35 40 30 20 25 0 20 –20 15 –40 10 –60 5 –80 0 –100 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 –40 –20 –5 25 85 105 CMRR (nV/V) TEMPERATURE (°C) Figure 21. CMRR Distribution (Gain = 128 V/V) Figure 24. CMRR Mean vs. Temperature (Gain = 128 V/V) Rev. B | Page 13 of 59 PERCENT OF UNITS (%) CMRR (dB) GAIN NONLINEARITY (ppm) 15741-141 15741-219 15741-152 CMRR MEAN ±3σ (nV/V) CMRR (dB) GAIN NONLINEARITY (ppm) 15741-203 15741-140 15741-234
Page14

ADA4254 Data Sheet 50 2.0 N = 4356 UNITS N = 120 UNITS 45 µ = –0.34µV/V TA = –40°C TO +105°C σ = 0.13µV/V 1.5 40 1.0 35 30 0.5 25 0 20 –0.5 15 –1.0 10 5 –1.5 0 –2.0 –0.95 –0.75 –0.55 –0.35 –0.15 0.05 0.25 –40 –20 –5 25 85 105 CMRR (µV/V) TEMPERATURE (°C) Figure 25. CMRR Distribution (Gain = 1 V/V) Figure 28. CMRR Mean vs. Temperature (Gain = 1 V/V) 50 20 N = 4356 UNITS N = 120 UNITS 45 µ = –5.8µV/V TA = –40°C TO +105°C σ = 2.1µV/V 15 40 10 35 5 30 25 0 20 –5 15 –10 10 –15 5 0 –20 –13 –11 –9 –7 –5 –3 –1 1 3 5 7 –40 –20 –5 25 85 105 CMRR (µV/V) TEMPERATURE (°C) Figure 26. CMRR Distribution (Gain = 1/16 V/V) Figure 29. CMRR Mean vs. Temperature (Gain = 1/16 V/V) 50 50 N = 4356 UNITS N = 4356 UNITS 45 µ = 0.3nA 45 µ = 0.01nA σ = 0.1nA σ = 0.14nA 40 40 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 –0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 –0.5 –0.3 –0.1 0.1 0.3 0.5 0.7 INPUT BIAS CURRENT (nA) INPUT OFFSET CURRENT (nA) Figure 27. Input Bias Current Distribution Figure 30. Input Offset Current Distribution Rev. B | Page 14 of 59 PERCENT OF UNITS (%) PERCENT OF UNITS (%) PERCENT OF UNITS (%) 15741-150 15741-155 15741-151 PERCENT OF UNITS (%) CMRR MEAN ±3σ (µV/V) CMRR MEAN ±3σ (µV/V) 15741-156 15741-202 15741-201
Page15

Data Sheet ADA4254 10 5 N = 15 UNITS N = 15 UNITS 8 4 6 3 4 2 2 1 0 0 –2 –1 –4 –2 –6 –3 –8 –4 –10 –5 –40 –20 0 20 40 60 80 100 120 –40 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) TEMPERATURE (°C) Figure 31. Input Bias Current vs. Temperature Figure 34. Input Offset Current vs. Temperature 20 10 IB+ IB– 8 15 6 10 4 5 2 0 0 –2 –5 –4 –10 –6 –15 VSSH = –25V –8 VSSH = –25V VDDH = +25V VDDH = +25V –20 –10 –24 –20 –16 –12 –8 -4 0 4 8 12 16 20 24 –24 –20 –16 –12 –8 –4 0 4 8 12 16 20 24 INPUT COMMON-MODE VOLTAGE (V) INPUT COMMON-MODE VOLTAGE (V) Figure 32. Input Bias Current vs. Input Common-Mode Voltage Figure 35. Input Offset Current vs. Input Common-Mode Voltage 20 20 VSSH = –15V VSSH = –5V VDDH = +15V VDDH = +5V 15 15 10 10 5 5 0 0 ±5 ±15 –5 –5 OVP OVP OVP OVP VSSH – 60V VSSH + 60V VSSH – 60V VSSH + 60V –10 –10 –15 –15 –20 –20 –90 –75 –60 –45 –30 –15 0 15 30 45 60 –75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65 INPUT VOLTAGE (V) INPUT VOLTAGE (V) Figure 33. Input Overvoltage Performance, VDDH/VSSH = ±15 V Figure 36. Input Overvoltage Performance, VDDH/VSSH = ±5 V Rev. B | Page 15 of 59 INPUT BIAS CURRENT (µA) INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA) 15741-153 15741-211 15741-230 INPUT BIAS CURRENT (µA) INPUT OFFSET CURRENT (nA) INPUT OFFSET CURRENT (nA) 15741-229 15741-154 15741-212
Page16

ADA4254 Data Sheet 30 2.50 GAIN = 128V/V GAIN = 1V/V FROM VDDH 25 FROM VSSH 20 2.25 15 10 GAIN = 1/4V/V 2.00 5 0 GAIN = 1/8V/V 1.75 –5 GAIN = 1/16V/V –10 1.50 –15 –20 1.25 –25 –30 1.00 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –40 –20 0 20 40 60 80 100 120 DIFFERENTIAL OUTPUT VOLTAGE (V) TEMPERATURE (°C) Figure 37. Diamond Plot Figure 40. Input Voltage Headroom vs. Temperature 750 700 VSSH = –28V, VDDH = +28V VSSH = –5V, VDDH = +5V 700 650 VCM = –25V 650 600 VCM = +25V 600 550 550 500 VCM = 0V 500 450 450 400 –28 –24 –20 –16 –12 –8 –4 0 4 8 12 16 20 24 28 –40 –20 0 20 40 60 80 100 120 INPUT COMMON-MODE VOLTAGE (V) TEMPERATURE (°C) Figure 38. Multiplexer On-Resistance vs. Input Common-Mode Voltage Figure 41. Multiplexer On-Resistance vs. Temperature 160 160 140 140 GAIN = 128V/V 120 GAIN = 128V/V 120 GAIN = 1V/V 100 GAIN = 1V/V 100 GAIN = 1/16V/V 80 80 60 GAIN = 1/16V/V 60 40 40 20 0 20 –20 0 1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 39. VSSH PSRR vs. Frequency Figure 42. VDDH PSRR vs. Frequency Rev. B | Page 16 of 59 VSSH PSRR (dB) MULTIPLEXER ON-RESISTANCE (Ω) INPUT COMMON-MODE VOLTAGE (V) 15741-149 15741-208 15741-206 MULTIPLEXER ON-RESISTANCE (Ω) VDDH PSRR (dB) INPUT VOLTAGE HEADROOM (V) 15741-147 15741-157 15741-207
Page17

Data Sheet ADA4254 160 160 GAIN = 128V/V GAIN = 128V/V 140 140 120 120 GAIN = 1V/V GAIN = 1V/V 100 100 GAIN = 1/16V/V GAIN = 1/16V/V 80 80 60 60 40 40 20 20 0 0 1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 43. AVDD PSRR vs. Frequency Figure 46. DVDD PSRR vs. Frequency 1000 1100 900 AVDD = 5V 800 DVDD = 3V 1000 700 IVDDH IAVDD 600 900 500 800 400 300 700 200 100 600 0 –100 500 –200 –300 400 –400 –500 300 –600 200 –700 IVSSH IDVDD –800 100 VSSH = –28V –900 VDDH = +28V –1000 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 1 2 3 4 5 6 VDDH – VSSH (V) AVVD/DVDD (V) Figure 44. Quiescent Current vs. Supply Voltage (VDDH – VSSH) Figure 47. Quiescent Current vs. Supply Voltage (AVDD/DVDD) 1050 100 1000 IVSSH 950 900 850 800 IVDDH 10 750 GAIN = 1/16V/V 700 650 IAVDD 600 550 1 500 450 GAIN = 1V/V 400 350 0.10 300 250 200 GAIN = 128V/V 150 IDVDD 100 –40 –20 0 20 40 60 80 100 120 0.01 0.01 0.1 1 10 100 1k 10k 100k TEMPERATURE (°C) FREQUENCY (Hz) Figure 45. Quiescent Current vs. Temperature Figure 48. Voltage Noise Spectral Density, RTI Rev. B | Page 17 of 59 QUIESCENT CURRENT (µA) QUIESCENT CURRENT (µA) AVDD PSRR (dB) 15741-138 15741-227 15741-226 VNOISE (µV/√Hz) QUIESCENT CURRENT (µA) DVDD PSRR (dB) 15741-125 15741-204 15741-225
Page18

ADA4254 Data Sheet 250 250 200 195nV 200 190nV 150 150 100 100 50 50 0 395nV p-p 330nV p-p 0 –50 –50 –100 –150 –100 –140nV –200 –200nV –150 –250 –200 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10 TIME (Seconds) TIME (Seconds) Figure 49. 0.01 Hz to 10 Hz Voltage Noise, RTI (Gain = 128 V/V) Figure 52. 0.1 Hz to 10 Hz Voltage Noise, RTI (Gain = 128 V/V) 4 4 3.3µV 3 3 3.00µV 2 2 1 1 0 6.8µV p-p 0 5.75µV p-p –1 –1 –2 –2 –2.75µV –3 –3 –3.5µV –4 –4 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10 TIME (Seconds) TIME (Seconds) Figure 50. 0.01 Hz to 10 Hz Voltage Noise, RTI (Gain = 1 V/V) Figure 53. 0.1 Hz to 10 Hz Voltage Noise, RTI (Gain = 1 V/V) 60 60 45µV 40 40 40µV 20 20 0 0 100µV p-p 95µV p-p –20 –20 –40 –40 –55µV –55µV –60 –60 0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10 TIME (Seconds) TIME (Seconds) Figure 51. 0.01 Hz to 10 Hz Voltage Noise, RTI (Gain = 1/16 V/V) Figure 54. 0.1 Hz to 10 Hz Voltage Noise, RTI (Gain = 1/16 V/V) Rev. B | Page 18 of 59 VOLTAGE NOISE (µV) VOLTAGE NOISE (µV) VOLTAGE NOISE (nV) 15741-134 15741-133 15741-132 VOLTAGE NOISE (µV) VOLTAGE NOISE (µV) VOLTAGE NOISE (nV) 15741-135 15741-136 15741-137
Page19

Data Sheet ADA4254 50 6 128V/V 40 GAIN = 1.375V/V 64V/V 3 GAIN = 1.25V/V 30 32V/V GAIN = 1V/V 16V/V 20 0 8V/V 4V/V 10 2V/V –3 0 1V/V 1/2V/V –10 –6 1/4V/V 1/8 –20 V/V 1/16V/V –9 –30 –40 –12 1 10 100 1k 10k 100k 1M 10M 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure 55. Small Signal Frequency Response Figure 58. VOCM Small Signal Frequency Response –30 –20 DIFFERENTIAL OUTPUT NOTE: THD + N BECOMES DOMINATED BY VOLTAGE = 8V p-p NOISE AS OUTPUT SIGNAL SIZE REDUCES –40 –30 –40 –50 –50 –60 GAIN = 128V/V GAIN = 128V/V –60 –70 GAIN = 1/2V/V –70 GAIN = 8V/V –80 GAIN = 8V/V –80 GAIN = 1V/V –90 –90 GAIN = 1/2V/V NOTE: FLAT PORTION OF THE CURVES GAIN = 1V/V IS DOMINATED BY NOISE INPUT FREQUENCY = 1kHz –100 –100 10 100 1k 10k 0.1 1 10 FREQUENCY (Hz) DIFFERENTIAL OUTPUT VOLTAGE (V p-p) Figure 56. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency with Figure 59. THD + N vs. Differential Output Voltage with 100 kHz Filter, 100 kHz Filter, Differential Load Resistor (RL, DIFF) = 5 kΩ RL, DIFF = 5 kΩ –30 14 DIFFERENTIAL OUTPUT VOLTAGE = 8V p-p AVDD = +5V SOURCING –40 13 –50 12 AVDD = +2.7V SOURCING –60 GAIN = 128V/V 11 –70 AVDD = +2.7V SINKING 10 –80 9 –90 AVDD = +5V SINKING GAIN = 8V/V GAIN = 1/2V/V –100 8 GAIN = 1V/V –110 7 10 100 1k 10k –40 –20 0 20 40 60 80 100 120 FREQUENCY (Hz) TEMPERATURE (°C) Figure 57. THD vs. Frequency, RL, DIFF = 5 kΩ Figure 60. Sinking/Sourcing Short-Circuit Output Current vs. Temperature Rev. B | Page 19 of 59 THD (dB) THD + N (dB) GAIN (dB) 15741-231 15741-232 15741-166 OUTPUT CURRENT (mA) THD + N (dB) GAIN (dB) 15741-213 15741-233 15741-205
Page20

ADA4254 Data Sheet 60 60 N = 4356 UNITS N = 4356 UNITS µ = 12mA µ = 9mA σ = 1.3mA σ = 1mA 50 50 40 40 30 30 20 20 10 10 0 0 6 8 10 12 14 16 18 20 4 6 8 10 12 14 16 SHORT-CIRCUIT CURRENT (mA) SHORT-CIRCUIT CURRENT (mA) Figure 61. Sourcing Short-Circuit Current Distribution Figure 64. Sinking Short-Circuit Current Distribution –IN1 INPUT SIGNAL –IN1 INPUT SIGNAL +IN1 = 0V +IN1 = 0V DIFFERENTIAL DIFFERENTIAL OUTPUT VOLTAGE OUTPUT VOLTAGE FAULT INTERRUPT FAULT INTERRUPT 10µs/DIV 10µs/DIV Figure 62. Large Signal Step Response (Gain = 128 V/V) Figure 65. Large Signal Step Response (Gain = 8 V/V) – IN1 INPUT SIGNAL – IN1 INPUT SIGNAL +IN1 = 0V +IN1 = 0V INPUT OVERLOADED DIFFERENTIAL DIFFERENTIAL OUTPUT VOLTAGE OUTPUT VOLTAGE FAULT INTERRUPT FAULT INTERRUPT 10µs/DIV 10µs/DIV Figure 63. Input Overload Recovery Step Response (Gain = 1 V/V) Figure 66. Large Signal Step Response (Gain = 1 V/V) Rev. B | Page 20 of 59 PERCENT OF UNITS (%) 5V/DIV 5V/DIV 5V/DIV 5V/DIV 5V/DIV 50mV/DIV 15741-169 15741-172 15741-160 PERCENT OF UNITS (%) 5V/DIV 5V/DIV 5V/DIV 5V/DIV 5V/DIV 1V/DIV 15741-171 15741-170 15741-159