1/59ページ
ダウンロード(961.2Kb)
Programmable Gain Instrumentation Amplifier
このカタログについて
ドキュメント名 | ADA4254 Zero Drift, High Voltage, Low Power |
---|---|
ドキュメント種別 | 製品カタログ |
ファイルサイズ | 961.2Kb |
取り扱い企業 | マウザー・エレクトロニクス (この企業の取り扱いカタログ一覧) |
この企業の関連カタログ
このカタログの内容
Page1
FEATURES、APPLICATIONS、GENERAL DESCRIPTION、SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM、COMPANION PRODUCTS
Zero Drift, High Voltage, Low Power,
Programmable Gain Instrumentation Amplifier
Data Sheet ADA4254
FEATURES SIMPLIFIED FUNCTIONAL BLOCK DIAGRAM
Optimized for ADC synchronization VDDH
Low power: 22 mW (±12 V supplies)
EXCITATION
12 binary gain steps from 1/16 V/V to 128 V/V CURRENTS ADA4254
IOUT_HV
3 scaling gains: 1 V/V, 1.25 V/V, and 1.375 V/V IOUT_LV AVDD
±60 V protected input multiplexer
Excellent dc precision + ROUT
Low input offset voltage: ±14 μV maximum –
+IN1 – –OUT
Low input offset voltage drift: ±0.08 μV/°C maximum +
–IN1
Gain calibration via ROM RIN VOCM
+IN2
Low gain drift: ±1 ppm/°C maximum +
–IN2
High CMRR: 116 dB minimum, G = 1 V/V – +OUT
–
Low input bias current: ±1.5 nA maximum +
High input impedance ROUT
Integrated input EMI filtering AVSS
Wide input supply range: ±5 V to ±28 V DIGITAL CONTROL DVDD
Dedicated output amplifier supplies 7 × GPIO SPI INTERFACE DVSS
7 GPIO ports with special functions
Sequential chip select mode
VSSH
External multiplexer control
Figure 1.
Excitation current sources
SPI port with checksum (CRC) support
Internal fault detection The input multiplexer provides ±60 V protection to the high
Wire break test currents impedance inputs of the amplifier, while providing the
On-chip test multiplexer capability to switch between two input sources. In addition,
28-lead, 5 mm × 5 mm LFCSP, 24-lead TSSOP
integrated electromagnetic interference (EMI) filters block
Specified temperature range: −40°C to +105°C
APPLICATIONS harsh RF noise from the sensitive inputs of the amplifier.
Universal process control front ends Various safety features on the ADA4254 detect both internal
Data acquisition systems and external faults. The serial port interface (SPI) supports
Test and measurement systems cyclical redundancy check (CRC) error detection to ensure
GENERAL DESCRIPTION robust communication. These safety features ease system safety
integrity level (SIL) certification.
The ADA4254 is a zero drift, high voltage, low power
programmable gain instrumentation amplifier (PGIA) designed Seven general-purpose input/output (GPIO) pins, which can be
for process control and industrial applications. The ADA4254 configured to provide various special functions, are included in
features 12 binary weighted gains ranging from 1/16 V/V to the ADA4254. An excitation current source output is available
128 V/V and three scaling gain options of 1 V/V, 1.25 V/V, and to bias sensors such as resistance temperature detectors (RTDs).
1.375 V/V, resulting in 36 possible gain settings. The power The ADA4254 is specified over the −40°C to +105°C temperature
consumption of the ADA4254 is a mere 22 mW, making the range and is offered in a compact 5 mm × 5 mm, 28-lead LFCSP
device an excellent choice for industrial systems that demand and a 24-lead TSSOP.
precision, robustness, and low power.
COMPANION PRODUCTS
The zero drift amplifier topology of the ADA4254 self calibrates
ADCs: AD4007, AD7768, AD7175-2
dc errors and low frequency 1/f noise, achieving excellent dc
ADC Drivers: ADA4945-1, LTC6363
precision over the entire specified temperature range. This high
Voltage References: ADR4550, ADR3450, LT6656
level of precision maximizes dynamic range and greatly reduces
calibration requirements in many applications.
Rev. B Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
No license is granted by implication or otherwise under any patent or patent rights of Analog Tel: 781.329.4700 ©2019–2020 Analog Devices, Inc. All rights reserved.
Devices. Trademarks and registered trademarks are the property of their respective owners. Technical Support www.analog.com
±60V OVERVOLTAGE
PROTECTED MUX
EMI FILTER
15741-001
Page2
TABLE OF CONTENTS
ADA4254 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1 SPI Read/Write Error Detection .............................................. 35
Applications ...................................................................................... 1 SPI Command Length Error Detection .................................. 35
General Description ......................................................................... 1 Applications Information ............................................................. 36
Simplified Functional Block Diagram ........................................... 1 Input and Output Offset Voltage and Noise .......................... 36
Companion Products ....................................................................... 1 ADC Clock Synchronization .................................................... 36
Revision History ............................................................................... 3 Programmable Logic Controller (PLC) Voltage/Current
Specifications .................................................................................... 4 Input ............................................................................................. 37
Timing Specifications .................................................................. 8 3-Wire RTD With Current Excitation .................................... 38
Absolute Maximum Ratings ........................................................... 9 High Rail Current Sensing ........................................................ 39
Thermal Resistance ...................................................................... 9 Register Summary .......................................................................... 40
ESD Caution.................................................................................. 9 Register Details ............................................................................... 42
Pin Configurations and Function Descriptions ......................... 10 GAIN_MUX Register Details ................................................... 42
Typical Performance Characteristics ........................................... 11 Software Reset Register (Reset) Details ................................... 43
Theory of Operation ...................................................................... 23 Clock Synchronization Configuration Register (SYNC_CFG)
Details .......................................................................................... 44
Programmable Gain Instrumentation Amplifier .................. 23
Digital Error Register (DIGITAL_ERR) Details .................... 45
Input Multiplexer ....................................................................... 24
Analog Error Register (ANALOG_ERR) Details .................. 46
EMI Reduction and Internal EMI Filter ................................. 24
GPIO Data Register (GPIO_DATA) Details ......................... 47
Input Amplifier ........................................................................... 25
Internal Mux Control Register (INPUT_MUX) Details ...... 48
Output Amplifier........................................................................ 25
Wire Break Detect Register (WB_DETECT) Details ............ 49
Power Supplies ............................................................................ 26
GPIO Direction Register (GPIO_DIR) Details ..................... 50
ESD Map ...................................................................................... 26
Sequential Chip Select Register (SCS) Details ........................ 50
Output Ripple Calibration Configuration .............................. 27
Analog Error Mask Register (ANALOG_ERR_DIS) Details ... 51
General-Purpose Inputs/Outputs (GPIOs) ............................ 27
Digital Error Mask Register (DIGITAL_ERR_DIS) Details ..... 52
Excitation Currents .................................................................... 27
Special Function Configuration Register (SF_CFG) Details .... 53
External Clock Synchronization .............................................. 28
Error Configuration Register ................................................... 54
Sequential Chip Select (SCS) .................................................... 28
Test Multiplexer Register (TEST_MUX) Details .................. 55
Gain Error Calibration .............................................................. 30
Excitation Current Configuration Register
Wire Break Detection ................................................................ 31 (EX_CURRENT_CFG) Details ................................................ 56
Test Multiplexer ......................................................................... 32 Gain Calibration Registers (GAIN_CALx) Details ............... 57
External Mux Control ................................................................ 32 Trigger Calibration Register (TRIG_CAL) Details ............... 58
Digital Interface .............................................................................. 33 Master Clock Count Register (M_CLK_CNT) Details ......... 58
SPI Interface ................................................................................ 33 DIE Revision Identification Register (DIE_REV_ID) Details
Accessing the ADA4254 Register Map ................................... 33 ....................................................................................................... 58
Checksum Protection ................................................................ 33 Device Identification Registers (PART_ID) Details ............. 58
CRC Calculation ......................................................................... 35 Outline Dimensions ....................................................................... 59
Memory Map Checksum Protection ....................................... 35 Ordering Guide .......................................................................... 59
Read-Only Memory (ROM) Checksum Protection .............. 35
Rev. B | Page 2 of 59
Page3
REVISION HISTORY
Data Sheet ADA4254
REVISION HISTORY
6/2020—Rev. A to Rev. B 11/2019—Rev. 0 to Rev. A
Changes to Figure 10 ............................................................................ 11 Changes to Features Section and General Description Section ....... 1
Changes to Figure 23 ............................................................................ 13 Changes to Static Power Dissipation Parameter, Table 1 ........... 7
Changes to Figure 37 ............................................................................ 16 Changes to 3-Wire RTD With Current Excitation Section ...... 38
Change to Input Multiplexer Section ............................................... 24
Changes to External Clock Synchronization Section ....................... 28
Change to Wire Break Detection Section ........................................... 31 11/2019—Revision 0: Initial Version
Changes to Figure 100 ............................................................................ 36
Change to 3-Wire RTD with Current Excitation Section ............... 38
Change to Table 21 .................................................................................. 49
Change to Bits[7:0], DIE_REV_ID[7:0]—Die Revision
Identification Number Section .......................................................... 58
Rev. B | Page 3 of 59
Page4
SPECIFICATIONS
ADA4254 Data Sheet
SPECIFICATIONS
TA = 25°C, VDDH = 28 V, VSSH = −28 V, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, DVSS = 0 V, VOCM = AVDD/2, and no load,
unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
OFFSET VOLTAGE Total offset, referred to input (RTI) =
VOSI + VOSO
Gain
Differential Offset Voltage
Input Offset Voltage (VOSI) ±3 ±14 μV
Output Offset Voltage (VOSO) ±40 ±125 μV
Differential Offset Voltage TA = −40°C to +105°C1, total offset drift,
Drift RTI = VOSI/T + VOSO /T
Gain
VOSI/T ±0.03 ±0.08 μV/°C
VOSO/T ±0.98 ±2.5 μV/°C
Differential Offset Voltage vs. VDDH − VSSH = 10 V to 56 V
VDDH and VSSH (Power
Supply Rejection Ratio
(PSRR)), RTI
Gain (G) = 1/16 V/V 80 90 dB
G = 1 V/V 110 120 dB
G = 128 V/V 140 154 dB
Differential Offset Voltage vs. AVDD − AVSS = 2.7 V to 5.5 V
AVDD (PSRR), RTI
G = 1/16 V/V 66 76 dB
G = 1 V/V 90 100 dB
G = 128 V/V 118 136 dB
Differential Offset vs. External Clock frequency = 0.8 MHz to 1.2 MHz
Clock Frequency, RTI
G = 1/16 V/V ±0.2 μV/kHz
G = 1 V/V ±0.1 μV/kHz
G = 128 V/V ±0.002 μV/kHz
COMMON–MODE REJECTION +IN = −IN = −25 V to +25 V, scaling gain = 1 V/V
RATIO (CMRR), RTI
CMRR to 60 Hz
G = 1/16 V/V 92 102 dB
G = 1 V/V 116 126 dB
G = 128 V/V 140 150 dB
G = 1/16 TA = −40°C to +105°C1 88 dB
G = 1 TA = −40°C to +105°C1 112 dB
G = 128 TA = −40°C to +105°C1 136 dB
Rev. B | Page 4 of 59
Page5
Data Sheet ADA4254
Parameter Test Conditions/Comments Min Typ Max Unit
GAIN Output voltage (V ) = 8.5 V p-p2
OUT
Input Gain Range 1/16 to 128 V/V
Output Gain Range 1, 1.25, 1.375 V/V
Gain Error
Before Calibration All Gains <±0.06 ±0.12 %
Using Calibration All Gains <±0.01 ±0.025 %
Coefficient
All Gain Values Except as TA = −40°C to +105°C1 <±0.3 ±1 ppm/°C
Follows:
G = 1/16 V/V, All Scaling T = −40°C to +105°C1
A ±0.8 ±1.5 ppm/°C
Gains
G = 32 V/V, 64 V/V, All TA = −40°C to +105°C1 ±0.4 ±1.5 ppm/°C
Scaling Gains
G = 128 V/V, Scaling Gains TA = −40°C to +105°C1 ±0.6 ±2 ppm/°C
1 V/V, 1.25 V/V
G = 128 V/V, Scaling Gain TA = −40°C to +105°C1 ±0.7 ±2.5 ppm/°C
1.375 V/V
Nonlinearity All gains except 32 V/V, 64 V/V and 128 V/V2, 3 5 15 ppm
G = 32 V/V 7.5 ppm
G = 64 V/V 12 ppm
G = 128 V/V 15 ppm
NOISE 2
Total noise, RTI = e 2 eno
ni Gain
Voltage Noise, 1 kHz, RTI
Input Noise (eni) 17 nV/√Hz
Output Noise (eno) 253 nV/√Hz
0.1 Hz to 10 Hz, RTI
G = 1/16 V/V 95 μV p-p
G = 1 V/V 5.75 μV p-p
G = 128 V/V 330 nV p-p
0.01 Hz to 10 Hz, RTI
G = 1/16 V/V 100 μV p-p
G = 1 V/V 6.8 μV p-p
G = 128 V/V 395 nV p-p
Current Noise
10 Hz 100 fA/√Hz
0.1 Hz to 10 Hz 3.1 pA p-p
0.01 Hz to 10 Hz 4 pA p-p
INPUT CHARACTERISTICS
Input Bias Current ±0.45 ±1.5 nA
TA = −40°C to +85°C1 ±4 nA
TA = −40°C to +105°C1 ±14 nA
Input Offset Current ±0.2 ±1.3 nA
TA = −40°C to +85°C1 ±2.5 nA
TA = −40°C to +105°C1 ±3.5 nA
Input Impedance Common mode >1||11 GΩ||pF
Differential >1||4.7 GΩ||pF
Input Operating Voltage Range Guaranteed by CMRR VSSH + 3 VDDH − 3 V
MUX_OVER_VOLT_ERR
Positive Threshold VDDH − 0.9 V
Negative Threshold VSSH + 0.9 V
INPUT_ERR/GAIN_RST
Positive Threshold VDDH − 1.5 V
Negative Threshold VSSH + 1.5 V
Rev. B | Page 5 of 59
Page6
ADA4254 Data Sheet
Parameter Test Conditions/Comments Min Typ Max Unit
ANALOG OUTPUTS
Output Voltage Swing from AVDD = 5 V, load resistor (RL) = 2.49 kΩ to 2.5 V AVSS + 0.06 AVDD − V
Each Rail 0.08
AVDD = 2.7 V, RL = 1.8 kΩ to 1.35 V AVSS + 0.05 AVDD − V
0.06
Capacitive Load Drive 500 pF
Short-Circuit Current To 2.5 V, G = 1.375, AVDD = 2.7 V to 5 V 3.5 11 25 mA
OUTPUT_ERR
Positive Threshold AVDD − 0.03 V
Negative Threshold AVSS + 0.03 V
VOCM DYNAMIC PERFORMANCE
−3 dB Bandwidth 2.3 MHz
Slew Rate 1.9 V/μs
Voltage Noise Frequency = 1 kHz 160 nV/√Hz
Gain 1 V/V
VOCM INPUT CHARACTERISTICS
Input Voltage Range AVSS AVDD − 1 V
Input Resistance 10 GΩ
Common Mode Offset Voltage 20 μV
Common Mode Offset 2.5 μV/°C
Voltage Drift
Input Bias Current 500 pA
DYNAMIC RESPONSE
Small Signal ±3 dB Bandwidth
G = 1/16 V/V 15 kHz
G = 1/8 V/V 28 kHz
G = 1/4 V/V 67 kHz
G = 1/2 V/V 138 kHz
G = 1 V/V 1800 kHz
G = 2 V/V 513 kHz
G = 4 V/V 341 kHz
G = 8 V/V 319 kHz
G = 16 V/V 297 kHz
G = 32 V/V 275 kHz
G = 64 V/V 257 kHz
G = 128 V/V 209 kHz
Settling Time 0.01% VOUT = 8 V p-p
G = 1 V/V 10 μs
G = 8 V/V 8 μs
G = 128 V/V 5 μs
Settling Time 0.0015% (16-Bit) VOUT = 8 V p-p
G = 1 V/V 18 μs
G = 8 V/V 15 μs
G = 128 V/V 15 μs
Slew Rate VOUT = 8 V p-p2
G = 1/16 V/V 0.06 V/μs
G = 1 V/V 0.8 V/μs
G = 128 V/V 3.1 V/μs
Rev. B | Page 6 of 59
Page7
Data Sheet ADA4254
Parameter Test Conditions/Comments Min Typ Max Unit
THD VOUT = 8 V p-p at frequency = 1 kHz
G = 1 V/V −104 dB
G = 8 V/V −96 dB
G = 128 V/V −80 dB
Input Overload Recovery Time Input voltage (VIN) = 56 V p-p 40 μs
Output Overload Recovery G = 1 V/V, VIN = 10 V p-p 6 μs
Time
EXCITATION CURRENT SOURCES
(IOUT_LV/IOUT_HV)
Output Current Range 100 1500 μA
Initial Tolerance ±3 ±10 %
Drift TA = −40°C to +105°C ±200 ppm/°C
Current Matching ±3 ±8 %
Drift Matching TA = −40°C to +105°C ±50 ppm/°C
WIRE BREAK CURRENTS
Output Current Range 0.25 16 μA
Impedance Threshold (VDDH − 4)/I 4
WB Ω
Initial Tolerance ±12 %
Drift TA = −40°C to +105°C ±250 ppm/°C
DIGITAL INPUTS
Low (VINL) 0 0.8 V
High (VINH) 0.6 × DVDD DVDD V
Digital Input Pin Capacitance 5 pF
DIGITAL OUTPUT
Low (VOL) Sinking 4 mA 0.7 V
High (VOH) Sourcing 2 mA DVDD − 0.8 V
INTERNAL/EXTERNAL CLOCK
Internal Clock
Frequency 0.8 1 1.2 MHz
Duty Cycle 50 %
Internal Clock Divider Range 1 32 MHz/
MHz
POWER SUPPLY
VDDH − VSSH 10 56 V
AVDD − AVSS 2.7 5 V
DVDD − DVSS 2.7 5 V
IVDDH 600 765 μA
IVSSH 780 985 μA
IDVDD DVDD = 3 V 150 205 μA
IAVDD 980 1305 μA
Static Power Dissipation DVDD = 3 V, VSSH = −28 V, VDHH = 28 V 44 56 mW
DVDD = 3 V, VSSH = −15 V, VDDH = 15 V 26 34 mW
DVDD = 3 V, VSSH = −12 V, VDDH = 12 V 22 28 mW
1 Guaranteed by design. These specifications are not production tested but are supported by characterization data at the initial product release.
2 For gains less than 1/2, a smaller output swing is used.
3 Only G = 1 V/V is production tested.
4 IWB means wire break current.
Rev. B | Page 7 of 59
Page8
TIMING SPECIFICATIONS、Timing Diagrams
ADA4254 Data Sheet
TIMING SPECIFICATIONS
VDDH = 28 V, VSSH = −28 V, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, DVSS = 0 V, VOCM = AVDD/2 V.
Table 2. Digital Values and SPI Timing Specifications
Parameter Test Conditions/Comments Min Typ Max Unit
Maximum Clock Rate (SCLK) 5 MHz
Minimum Pulse Width (SCLK)
High tPWH 75 ns
Low tPWL 75 ns
SDI/SDO to SCLK Setup Time tDS 10 ns
SDI/SDO to SCLK Hold Time tDH 10 ns
Data Valid, SDO to SCLK tDV 50 ns
Setup Time, CS to SCLK tDCS 30 ns
Timing Diagrams
INSTRUCTION CYCLE DATA TRANSFER CYCLE
CS
SCLK
SDIO R/W A6 A5 A4 A3 A2 A1 A0 D7N D6N D5N D30 D20 D10 D00
SDO D7N D6N D5N D30 D20 D10 D00
Figure 2. SPI Timing Diagram, MSB First
tDCS
tSCLK
CS
tPWH tPWL
SCLK
tDS tDH
SDI INSTRUCTION BIT 7 INSTRUCTION BIT 6
Figure 3. SPI Register Write Timing Diagram
CS
SCLK
tDV
SDI, DATA BIT n DATA BIT n – 1
SDO
Figure 4. SPI Register Read Timing Diagram
Rev. B | Page 8 of 59
15741-004 15741-003 15741-002
Page9
ABSOLUTE MAXIMUM RATINGS、THERMAL RESISTANCE、ESD CAUTION
Data Sheet ADA4254
ABSOLUTE MAXIMUM RATINGS
Table 3. THERMAL RESISTANCE
Parameter Rating Thermal performance is directly linked to printed circuit board
VDDH VSSH – 0.3 V to VSSH + 60 V (PCB) design and operating environment. Careful attention to
AVDD AVSS – 0.3 V to AVSS + 5.5 V PCB thermal design is required.
DVDD DVSS – 0.3 V to DVSS + 5.5 V θJA is the natural convection, junction to ambient, thermal
AVSS or DVSS VSSH – 0.3 V to VSSH + 30 V resistance measured in a one cubic foot sealed enclosure. θJC
Voltage VDDH – 30 V to VDDH + 0.3 V is the junction to case thermal resistance.
Current ±10 mA
Input Voltage (+IN1, −IN1, +IN2, VSSH − 60 V to VSSH + 60 V Table 4. Thermal Resistance
or −IN2) Package Type1 θJA θJC Unit
Differential Input Voltage 60 V CP-28-10 36.9 1.9 °C/W
Between Any Two Amplifier RU-24 64.8 14.11 °C/W
Inputs (+IN1, −IN1, +IN2, or
−IN2) 1 The thermal resistance values specified in Table 4 are simulated based on
−OUT, +OUT Short-Circuit Indefinite JEDEC specifications (unless specified otherwise) and must be used in
compliance with JESD51-12.
Current
VOCM Refer to the ESD Map section for a schematic of ESD diodes
Voltage AVSS – 0.3 V to AVDD + 0.3 V and paths.
Current ±10 mA ESD CAUTION
Digital Inputs/Outputs (SPI and DVSS – 0.3 V to DVDD + 0.3 V
GPIO), Voltage
Digital Inputs (SPI and GPIO), ±10 mA
Current
IOUT_LV
Voltage AVSS – 0.3 V to AVDD + 0.3 V
Current ±10 mA
IOUT_HV
Voltage VSSH – 0.3 V to VDDH + 0.3 V
Current ±10 mA
Operating Temperature Range −40°C to +125°C
Specified Temperature Range −40°C to +105°C
Maximum Junction Temperature +150°C
Storage Temperature Range −65°C to +150°C
Stresses at or above those listed under Absolute Maximum Ratings
may cause permanent damage to the product. This is a stress rating
only; functional operation of the product at these or any other
conditions above those indicated in the operational section of this
specification is not implied. Operation beyond the maximum
operating conditions for extended periods may affect product
reliability.
Rev. B | Page 9 of 59
Page10
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
ADA4254 Data Sheet
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
–OUT 1 24 +OUT
VOCM 2 23 GPIO0
AVSS 3 22 GPIO1
AVDD 4 21 GPIO2
+IN1 1 21 VOCM
IOUT_LV 5 20 GPIO3
–IN1 2 20 –OUT
+IN2 3 19 +OUT IOUT_HV 6 ADA4254 19 GPIO4
ADA4254 TOP VIEW
–IN2 4 18 GPIO0 VDDH 7 18 CS
DNC 5 TOP VIEW 17 GPIO1
EPAD VSSH 8 17 SCLK
DVSS 6 16 GPIO2
+IN1 9 16 SDI
DVDD 7 15 GPIO3
–IN1 10 15 SDO
+IN2 11 14 DVDD
–IN2 12 13 DVSS
NOTES
1. DNC = DO NOT CONNECT. DO NOT CONNECT
TO THIS PIN.
2. CONNECT THE EXPOSED PAD (EPAD)
TO VSSH.
Figure 5. 28-Lead LFCSP Pin Configuration Figure 6. 24-Lead TSSOP Pin Configuration
Table 5. Pin Function Descriptions
Mnemonic LFCSP Pin No. TSSOP Pin No. Description
+IN1 1 9 Channel 1 Positive Input.
−IN1 2 10 Channel 1 Negative Input.
+IN2 3 11 Channel 2 Positive Input.
−IN2 4 12 Channel 2 Negative Input.
DNC 5, 28 Not applicable Do Not Connect. Do not connect to this pin.
DVSS 6 13 Negative Digital Supply Voltage.
DVDD 7 14 Positive Digital Supply Voltage.
SDO 8 15 SPI Serial Data Output.
SDI 9 16 SPI Serial Data Input.
SCLK 10 17 SPI Serial Clock Input.
CS 11 18 SPI Chip Select Input.
GPIO6 12 Not applicable GPIO6/SCS6.
GPIO5 13 Not applicable GPIO5/SCS5.
GPIO4 14 19 GPIO4/SCS4/Clock Input or Output.
GPIO3 15 20 GPIO3/SCS3/Fault Interrupt Output.
GPIO2 16 21 GPIO2/SCS2/Calibration Busy Out.
GPIO1 17 22 GPIO1/SCS1/External Multiplexer Control 1.
GPIO0 18 23 GPIO0/SCS0/External Multiplexer Control 0.
+OUT 19 24 Positive Output.
−OUT 20 1 Negative Output.
VOCM 21 2 Output Amplifier Common-Mode Voltage Input. This pin is high impedance
and is not internally biased.
AVSS 22 3 Output Amplifier Negative Supply Voltage.
AVDD 23 4 Output Amplifier Positive Supply Voltage.
IOUT_LV 24 5 Low Voltage Excitation Current Source Output.
IOUT_HV 25 6 High Voltage Excitation Current Source Output.
VDDH 26 7 Positive High Voltage Supply.
VSSH 27 8 Negative High Voltage Supply.
EPAD Not applicable Exposed Pad. Connect the exposed pad (EPAD) to VSSH.
Rev. B | Page 10 of 59
SDO 8 28 DNC
SDI 9 27 VSSH
SCLK 10 26 VDDH
CS 11 25 IOUT_HV
GPIO6 12 24 IOUT_LV
GPIO5 13 23 AVDD
GPIO4 14 22 AVSS
15741-006
15741-007
Page11
TYPICAL PERFORMANCE CHARACTERISTICS
Data Sheet ADA4254
TYPICAL PERFORMANCE CHARACTERISTICS
TA = 25°C, VDDH = 28 V, VSSH = −28 V, AVDD = 5 V, AVSS = 0 V, DVDD = 3.3 V, DVSS = 0 V, VOCM = AVDD/2, and no load,
unless otherwise noted.
50 50
N = 120 UNITS N = 120 UNITS
45 µ = 0.24µV 45 µ = –11.4nV/°C
σ = 2.4µV σ = 15.7nV/°C
40 40 TA = –40°C TO +105°C
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0
–10 –8 –6 –4 –2 0 2 4 6 8 10 –80 –64 –48 –32 –16 0 16 32 48 64 80
OFFSET VOLTAGE (µV) OFFSET VOLTAGE DRIFT (nV/°C)
Figure 7. Offset Voltage Distribution, RTI (Gain = 128 V/V) Figure 10. Offset Voltage Drift Distribution, RTI (Gain = 128 V/V)
50 50
N = 120 UNITS N = 120 UNITS
45 µ = –19.2µV 45 µ = –0.29µV/°C
σ = 22.2µV σ = 0.43µV/°C
40 T = –40°C TO +105°C
40 A
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0
–100 –80 –60 –40 –20 0 20 40 60 80 100 –2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0
OFFSET VOLTAGE (µV) OFFSET VOLTAGE DRIFT (µV/°C)
Figure 8. Offset Voltage Distribution, RTI (Gain = 1 V/V) Figure 11. Offset Voltage Drift Distribution, RTI (Gain = 1 V/V)
50 50
N = 120 UNITS N = 120 UNITS
45 µ = –0.34mV 45 µ = –4.84µV/°C
σ = 0.36mV σ = 6.9µV/°C
40 40 TA = –40°C TO +105°C
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0
–2.0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 2.0 0
–30 –24 –18 –12 –6 0 6 12 18 24 30
OFFSET VOLTAGE (mV) OFFSET VOLTAGE DRIFT (µV/°C)
Figure 9. Offset Voltage Distribution, RTI (Gain = 1/16 V/V) Figure 12. Offset Voltage Drift Distribution, RTI (Gain = 1/16 V/V)
Rev. B | Page 11 of 59
PERCENT OF UNITS (%) PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
15741-127
15741-126 15741-128
PERCENT OF UNITS (%) PERCENT OF UNITS (%) PERCENT OF UNITS (%)
15741-130 15741-129 15741-131
Page12
ADA4254 Data Sheet
0.15 0.15
N = 80 UNITS N = 40 UNITS
1
VOUT (ALL GAINS EXCEPT 1/16V/V) = 8V p-p VOUT (ALL GAINS EXCEPT /16V/V) = 8V p-p
1
V 1
OUT ( /16V/V) = 2V p-p VOUT ( /16V/V) = 2V p-p
0.10 0.10
0.05 0.05
0 0
–0.05 –0.05
–0.10 –0.10
–0.15 –0.15
1/ 1
16 / 1/ 1/ 1 11/ 13
8 4 2 4 /8 2 4 8 16 32 64 128 1/ 1/ 1/ 1 1 3
16 8 4 /2 1 1 /4 1 /8 2 4 8 16 32 64 128
GAIN SETTING (V/V) GAIN SETTING (V/V)
Figure 13. Gain Error vs. Gain Setting Figure 16. Gain Error vs. Gain Setting Using Calibration Coefficients
0.20 0.20
N = 80 UNITS N = 40 UNITS
VOUT (ALL GAINS EXCEPT 1/16V/V) = 8V p-p VOUT (ALL GAINS EXCEPT 1/16V/V) = 8V p-p
0.15 VOUT (1/16V/V) = 2V p-p 0.15 VOUT (1/16V/V) = 2V p-p
0.10 0.10
0.05 0.05
0 0
–0.05 –0.05
–0.10 –0.10
–0.15 –0.15
–0.20 –0.20
1/ 1
16 / 1
8 / 1
4 /2 1 11/ 13
4 /8 2 4 8 16 32 64 128 1/16 1/8 1/4 1/2 1 11/4 13/8 2 4 8 16 32 64 128
GAIN SETTING (V/V) GAIN SETTING (V/V)
Figure 14. Gain Error Distribution vs. Gain Setting Figure 17. Gain Error Distribution vs. Gain Setting Using Calibration
Coefficients
3 0.20
N = 80 UNITS N = 80 UNITS
V 1 1
OUT (ALL GAINS EXCEPT /16V/V) = 8V p-p VOUT (ALL GAINS EXCEPT /16V/V) = 8V p-p
V (1 0.15
OUT /16V/V) = 2V p-p VOUT (1/16V/V) = 2V p-p
2 TA = –40°C TO +105°C
0.10
1
0.05
0 0
–0.05
–1
–0.10
–2
–0.15
–3
1/ 1 1
16 /8 / 1
4 / 1 3
2 1 1 /4 1 /8 2 4 8 16 32 64 128 –0.20
GAIN SETTING (V/V)
GAIN SETTING CHANGE (V/V)
Figure 15. Gain Error Drift vs. Gain Setting Figure 18. Gain Error Deviation Between Sequential Gain Settings
Rev. B | Page 12 of 59
GAIN ERROR (%)
GAIN ERROR DRIFT MEAN ±3σ (ppm/°C) GAIN ERROR MEAN ±3σ (%)
15741-016
15741-013
15741-015
GAIN ERROR (%)
GAIN ERROR MEAN ±3σ (%) GAIN EROR MEAN ±3σ (%)
1/16 TO 1/8
1/ TO 18 /4
1/4 TO 1/2
1/2 TO 1
1 TO 11/4
11/4 TO 13/8
13/8 TO 2
2 TO 4
4 TO 8
8 TO 16
16 TO 32
32 TO 64
64 TO 128
15741-017 15741-218
15741-217
Page13
Data Sheet ADA4254
6 10
GAIN = 1V/V GAIN = 1V/V
5 9
4
8
3
7
2
1 6
0 5
–1 4
–2
3
–3
2
–4
–5 1
–6 0
–5 –4 –3 –2 –1 0 1 2 3 4 5 –40 –20 0 20 40 60 80 100 120
DIFFERENTIAL OUTPUT VOLTAGE (V) TEMPERATURE (°C)
Figure 19. Gain Nonlinearity Figure 22. Gain Nonlinearity vs. Temperature
160 140
GAIN = 128V/V
140 120
GAIN = 1V/V
120 100
GAIN = 1/16V/V
100 80
80 60
60 40
40 20
GAIN = 128V/V
GAIN = 1V/V
20 0 GAIN = 1/16V/V
0 –20
1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 20. CMRR vs. Frequency Figure 23. CMRR vs. Frequency with 1 kΩ Imbalance
50 100
N = 4356 UNITS N = 120 UNITS
45 µ = –10.2nV/V 80 TA = –40°C TO +105°C
σ = 7.9nV/V
40 60
35 40
30 20
25 0
20 –20
15 –40
10 –60
5 –80
0 –100
–65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 –40 –20 –5 25 85 105
CMRR (nV/V) TEMPERATURE (°C)
Figure 21. CMRR Distribution (Gain = 128 V/V) Figure 24. CMRR Mean vs. Temperature (Gain = 128 V/V)
Rev. B | Page 13 of 59
PERCENT OF UNITS (%)
CMRR (dB) GAIN NONLINEARITY (ppm)
15741-141 15741-219
15741-152
CMRR MEAN ±3σ (nV/V) CMRR (dB) GAIN NONLINEARITY (ppm)
15741-203 15741-140 15741-234
Page14
ADA4254 Data Sheet
50 2.0
N = 4356 UNITS N = 120 UNITS
45 µ = –0.34µV/V TA = –40°C TO +105°C
σ = 0.13µV/V 1.5
40
1.0
35
30 0.5
25 0
20
–0.5
15
–1.0
10
5 –1.5
0 –2.0
–0.95 –0.75 –0.55 –0.35 –0.15 0.05 0.25 –40 –20 –5 25 85 105
CMRR (µV/V) TEMPERATURE (°C)
Figure 25. CMRR Distribution (Gain = 1 V/V) Figure 28. CMRR Mean vs. Temperature (Gain = 1 V/V)
50 20
N = 4356 UNITS N = 120 UNITS
45 µ = –5.8µV/V TA = –40°C TO +105°C
σ = 2.1µV/V 15
40
10
35
5
30
25 0
20
–5
15
–10
10
–15
5
0 –20
–13 –11 –9 –7 –5 –3 –1 1 3 5 7 –40 –20 –5 25 85 105
CMRR (µV/V) TEMPERATURE (°C)
Figure 26. CMRR Distribution (Gain = 1/16 V/V) Figure 29. CMRR Mean vs. Temperature (Gain = 1/16 V/V)
50 50
N = 4356 UNITS N = 4356 UNITS
45 µ = 0.3nA 45 µ = 0.01nA
σ = 0.1nA σ = 0.14nA
40 40
35 35
30 30
25 25
20 20
15 15
10 10
5 5
0 0
–0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 –0.5 –0.3 –0.1 0.1 0.3 0.5 0.7
INPUT BIAS CURRENT (nA) INPUT OFFSET CURRENT (nA)
Figure 27. Input Bias Current Distribution Figure 30. Input Offset Current Distribution
Rev. B | Page 14 of 59
PERCENT OF UNITS (%) PERCENT OF UNITS (%) PERCENT OF UNITS (%)
15741-150
15741-155 15741-151
PERCENT OF UNITS (%) CMRR MEAN ±3σ (µV/V) CMRR MEAN ±3σ (µV/V)
15741-156
15741-202 15741-201
Page15
Data Sheet ADA4254
10 5
N = 15 UNITS N = 15 UNITS
8 4
6 3
4 2
2 1
0 0
–2 –1
–4 –2
–6 –3
–8 –4
–10 –5
–40 –20 0 20 40 60 80 100 120 –40 –20 0 20 40 60 80 100 120
TEMPERATURE (°C) TEMPERATURE (°C)
Figure 31. Input Bias Current vs. Temperature Figure 34. Input Offset Current vs. Temperature
20 10
IB+
IB– 8
15
6
10
4
5
2
0 0
–2
–5
–4
–10
–6
–15
VSSH = –25V –8 VSSH = –25V
VDDH = +25V VDDH = +25V
–20 –10
–24 –20 –16 –12 –8 -4 0 4 8 12 16 20 24 –24 –20 –16 –12 –8 –4 0 4 8 12 16 20 24
INPUT COMMON-MODE VOLTAGE (V) INPUT COMMON-MODE VOLTAGE (V)
Figure 32. Input Bias Current vs. Input Common-Mode Voltage Figure 35. Input Offset Current vs. Input Common-Mode Voltage
20 20
VSSH = –15V VSSH = –5V
VDDH = +15V VDDH = +5V
15 15
10 10
5 5
0 0
±5
±15
–5 –5 OVP OVP
OVP OVP VSSH – 60V VSSH + 60V
VSSH – 60V VSSH + 60V
–10 –10
–15 –15
–20 –20
–90 –75 –60 –45 –30 –15 0 15 30 45 60 –75 –65 –55 –45 –35 –25 –15 –5 5 15 25 35 45 55 65
INPUT VOLTAGE (V) INPUT VOLTAGE (V)
Figure 33. Input Overvoltage Performance, VDDH/VSSH = ±15 V Figure 36. Input Overvoltage Performance, VDDH/VSSH = ±5 V
Rev. B | Page 15 of 59
INPUT BIAS CURRENT (µA)
INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA)
15741-153 15741-211
15741-230
INPUT BIAS CURRENT (µA) INPUT OFFSET CURRENT (nA) INPUT OFFSET CURRENT (nA)
15741-229 15741-154 15741-212
Page16
ADA4254 Data Sheet
30 2.50
GAIN = 128V/V GAIN = 1V/V FROM VDDH
25 FROM VSSH
20 2.25
15
10 GAIN = 1/4V/V 2.00
5
0 GAIN = 1/8V/V 1.75
–5
GAIN = 1/16V/V
–10 1.50
–15
–20 1.25
–25
–30 1.00
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 –40 –20 0 20 40 60 80 100 120
DIFFERENTIAL OUTPUT VOLTAGE (V) TEMPERATURE (°C)
Figure 37. Diamond Plot Figure 40. Input Voltage Headroom vs. Temperature
750 700
VSSH = –28V, VDDH = +28V
VSSH = –5V, VDDH = +5V
700 650
VCM = –25V
650 600
VCM = +25V
600 550
550 500
VCM = 0V
500 450
450 400
–28 –24 –20 –16 –12 –8 –4 0 4 8 12 16 20 24 28 –40 –20 0 20 40 60 80 100 120
INPUT COMMON-MODE VOLTAGE (V) TEMPERATURE (°C)
Figure 38. Multiplexer On-Resistance vs. Input Common-Mode Voltage Figure 41. Multiplexer On-Resistance vs. Temperature
160 160
140 140 GAIN = 128V/V
120
GAIN = 128V/V 120
GAIN = 1V/V
100
GAIN = 1V/V 100
GAIN = 1/16V/V
80
80
60
GAIN = 1/16V/V
60
40
40
20
0 20
–20 0
1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 39. VSSH PSRR vs. Frequency Figure 42. VDDH PSRR vs. Frequency
Rev. B | Page 16 of 59
VSSH PSRR (dB) MULTIPLEXER ON-RESISTANCE (Ω) INPUT COMMON-MODE VOLTAGE (V)
15741-149 15741-208 15741-206
MULTIPLEXER ON-RESISTANCE (Ω)
VDDH PSRR (dB) INPUT VOLTAGE HEADROOM (V)
15741-147 15741-157
15741-207
Page17
Data Sheet ADA4254
160 160
GAIN = 128V/V GAIN = 128V/V
140 140
120 120 GAIN = 1V/V
GAIN = 1V/V
100 100 GAIN = 1/16V/V
GAIN = 1/16V/V
80 80
60 60
40 40
20 20
0 0
1 10 100 1k 10k 100k 1M 1 10 100 1k 10k 100k 1M
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 43. AVDD PSRR vs. Frequency Figure 46. DVDD PSRR vs. Frequency
1000 1100
900 AVDD = 5V
800 DVDD = 3V 1000
700 IVDDH IAVDD
600 900
500 800
400
300 700
200
100 600
0
–100 500
–200
–300 400
–400
–500 300
–600 200
–700 IVSSH IDVDD
–800 100 VSSH = –28V
–900 VDDH = +28V
–1000 0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 0 1 2 3 4 5 6
VDDH – VSSH (V) AVVD/DVDD (V)
Figure 44. Quiescent Current vs. Supply Voltage (VDDH – VSSH) Figure 47. Quiescent Current vs. Supply Voltage (AVDD/DVDD)
1050 100
1000 IVSSH
950
900
850
800 IVDDH 10
750 GAIN = 1/16V/V
700
650 IAVDD
600
550 1
500
450 GAIN = 1V/V
400
350 0.10
300
250
200 GAIN = 128V/V
150 IDVDD
100
–40 –20 0 20 40 60 80 100 120 0.01
0.01 0.1 1 10 100 1k 10k 100k
TEMPERATURE (°C) FREQUENCY (Hz)
Figure 45. Quiescent Current vs. Temperature Figure 48. Voltage Noise Spectral Density, RTI
Rev. B | Page 17 of 59
QUIESCENT CURRENT (µA) QUIESCENT CURRENT (µA) AVDD PSRR (dB)
15741-138
15741-227 15741-226
VNOISE (µV/√Hz) QUIESCENT CURRENT (µA) DVDD PSRR (dB)
15741-125 15741-204
15741-225
Page18
ADA4254 Data Sheet
250 250
200 195nV 200 190nV
150 150
100
100
50
50
0 395nV p-p 330nV p-p
0
–50
–50
–100
–150 –100
–140nV
–200 –200nV –150
–250 –200
0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10
TIME (Seconds) TIME (Seconds)
Figure 49. 0.01 Hz to 10 Hz Voltage Noise, RTI (Gain = 128 V/V) Figure 52. 0.1 Hz to 10 Hz Voltage Noise, RTI (Gain = 128 V/V)
4 4
3.3µV
3 3 3.00µV
2 2
1 1
0 6.8µV p-p 0 5.75µV p-p
–1 –1
–2 –2
–2.75µV
–3 –3
–3.5µV
–4 –4
0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10
TIME (Seconds) TIME (Seconds)
Figure 50. 0.01 Hz to 10 Hz Voltage Noise, RTI (Gain = 1 V/V) Figure 53. 0.1 Hz to 10 Hz Voltage Noise, RTI (Gain = 1 V/V)
60 60
45µV
40 40 40µV
20 20
0 0
100µV p-p 95µV p-p
–20 –20
–40 –40
–55µV –55µV
–60 –60
0 10 20 30 40 50 60 70 80 90 100 0 1 2 3 4 5 6 7 8 9 10
TIME (Seconds) TIME (Seconds)
Figure 51. 0.01 Hz to 10 Hz Voltage Noise, RTI (Gain = 1/16 V/V) Figure 54. 0.1 Hz to 10 Hz Voltage Noise, RTI (Gain = 1/16 V/V)
Rev. B | Page 18 of 59
VOLTAGE NOISE (µV) VOLTAGE NOISE (µV)
VOLTAGE NOISE (nV)
15741-134
15741-133
15741-132
VOLTAGE NOISE (µV) VOLTAGE NOISE (µV) VOLTAGE NOISE (nV)
15741-135 15741-136 15741-137
Page19
Data Sheet ADA4254
50 6
128V/V
40 GAIN = 1.375V/V
64V/V 3 GAIN = 1.25V/V
30 32V/V GAIN = 1V/V
16V/V
20 0
8V/V
4V/V
10
2V/V –3
0 1V/V
1/2V/V
–10 –6
1/4V/V
1/8
–20 V/V
1/16V/V –9
–30
–40 –12
1 10 100 1k 10k 100k 1M 10M 10 100 1k 10k 100k 1M 10M
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 55. Small Signal Frequency Response Figure 58. VOCM Small Signal Frequency Response
–30 –20
DIFFERENTIAL OUTPUT NOTE: THD + N BECOMES DOMINATED BY
VOLTAGE = 8V p-p NOISE AS OUTPUT SIGNAL SIZE REDUCES
–40 –30
–40
–50
–50
–60 GAIN = 128V/V
GAIN = 128V/V
–60
–70
GAIN = 1/2V/V –70 GAIN = 8V/V
–80
GAIN = 8V/V –80
GAIN = 1V/V
–90 –90 GAIN = 1/2V/V
NOTE: FLAT PORTION OF THE CURVES GAIN = 1V/V
IS DOMINATED BY NOISE INPUT FREQUENCY = 1kHz
–100 –100
10 100 1k 10k 0.1 1 10
FREQUENCY (Hz) DIFFERENTIAL OUTPUT VOLTAGE (V p-p)
Figure 56. Total Harmonic Distortion Plus Noise (THD + N) vs. Frequency with Figure 59. THD + N vs. Differential Output Voltage with 100 kHz Filter,
100 kHz Filter, Differential Load Resistor (RL, DIFF) = 5 kΩ RL, DIFF = 5 kΩ
–30 14
DIFFERENTIAL OUTPUT
VOLTAGE = 8V p-p AVDD = +5V SOURCING
–40 13
–50
12 AVDD = +2.7V SOURCING
–60
GAIN = 128V/V 11
–70 AVDD = +2.7V SINKING
10
–80
9
–90 AVDD = +5V SINKING
GAIN = 8V/V GAIN = 1/2V/V
–100 8
GAIN = 1V/V
–110 7
10 100 1k 10k –40 –20 0 20 40 60 80 100 120
FREQUENCY (Hz) TEMPERATURE (°C)
Figure 57. THD vs. Frequency, RL, DIFF = 5 kΩ Figure 60. Sinking/Sourcing Short-Circuit Output Current vs. Temperature
Rev. B | Page 19 of 59
THD (dB) THD + N (dB) GAIN (dB)
15741-231 15741-232
15741-166
OUTPUT CURRENT (mA) THD + N (dB) GAIN (dB)
15741-213 15741-233
15741-205
Page20
ADA4254 Data Sheet
60 60
N = 4356 UNITS N = 4356 UNITS
µ = 12mA µ = 9mA
σ = 1.3mA σ = 1mA
50 50
40 40
30 30
20 20
10 10
0 0
6 8 10 12 14 16 18 20 4 6 8 10 12 14 16
SHORT-CIRCUIT CURRENT (mA) SHORT-CIRCUIT CURRENT (mA)
Figure 61. Sourcing Short-Circuit Current Distribution Figure 64. Sinking Short-Circuit Current Distribution
–IN1 INPUT SIGNAL –IN1 INPUT SIGNAL
+IN1 = 0V +IN1 = 0V
DIFFERENTIAL DIFFERENTIAL
OUTPUT VOLTAGE OUTPUT VOLTAGE
FAULT INTERRUPT FAULT INTERRUPT
10µs/DIV 10µs/DIV
Figure 62. Large Signal Step Response (Gain = 128 V/V) Figure 65. Large Signal Step Response (Gain = 8 V/V)
– IN1 INPUT SIGNAL – IN1 INPUT SIGNAL
+IN1 = 0V +IN1 = 0V
INPUT
OVERLOADED
DIFFERENTIAL DIFFERENTIAL
OUTPUT VOLTAGE OUTPUT VOLTAGE
FAULT INTERRUPT FAULT INTERRUPT
10µs/DIV 10µs/DIV
Figure 63. Input Overload Recovery Step Response (Gain = 1 V/V) Figure 66. Large Signal Step Response (Gain = 1 V/V)
Rev. B | Page 20 of 59
PERCENT OF UNITS (%)
5V/DIV 5V/DIV 5V/DIV 5V/DIV 5V/DIV 50mV/DIV
15741-169 15741-172
15741-160
PERCENT OF UNITS (%)
5V/DIV 5V/DIV 5V/DIV
5V/DIV 5V/DIV 1V/DIV
15741-171
15741-170
15741-159