1/11ページ
ダウンロード(2.7Mb)
メガヘルツの超音波発振による、表面弾性波のダイナミック制御技術
超音波システム研究所は、
超音波システム(音圧測定、発振制御)を利用した
超音波の伝搬特性を分類することで、
表面弾性波のダイナミック制御技術を開発しました。
超音波の非線形制御システムを開発するための基礎技術です。
目的(洗浄・加工・攪拌・化学反応・・)に合わせた
様々な応用を実現しています。
この技術に関する、基礎実験を公開しています。
ポイントは
超音波伝搬に関する非線形現象を
効率の高い状態で制御可能にする
振動システムとしての
発振条件の設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、具体的なシステム技術を開発しました。
例 標準システム(水槽内の液量 2000リットルまでの場合)
超音波とファインバブルで表面改質処理した水槽
(水槽材質は、ステンレスでも、ガラス・塩ビ・アクリル・・でも可能)
脱気ファインバブル発生液循環装置 1台 ONOF制御
ベースとなる超音波振動子 1台 ONOFF制御
40kHz 600W(出力10W~400W)
メガヘルツの超音波発振制御プローブ 2本
メガヘルツの超音波発振制御プローブ1 パルス発振
1~20MHz(出力15W)
メガヘルツの超音波発振制御プローブ2 スイープ発振
1~20MHz(出力15W)
このカタログについて
ドキュメント名 | 超音波のダイナミック制御技術 |
---|---|
ドキュメント種別 | 製品カタログ |
ファイルサイズ | 2.7Mb |
登録カテゴリ | |
取り扱い企業 | 超音波システム研究所 (この企業の取り扱いカタログ一覧) |
この企業の関連カタログ
このカタログの内容
Page1
超音波のダイナミック制御技術
メガヘルツの超音波発振による、
表面弾性波のダイナミック制御技術
(超音波の非線形制御システムを開発する技術)
超音波システム研究所は、
超音波システム(音圧測定、発振制御)を利用した
超音波の伝搬特性を分類することで、表面弾性波のダイナミック制御技術を開発しました。
Page2
超音波の非線形制御システムを開発するための基礎技術です。
目的(洗浄・加工・攪拌・化学反応・・)に合わせた様々な応用を実現しています。
この技術に関する、基礎実験資料を公開しています。
ポイントは
超音波伝搬に関する非線形現象を
効率の高い状態で制御可能にする
振動システムとしての、発振条件の設定(波形・出力・周波数・変化・・・)です。
上記の具体的な技術として
水槽・治工具・・・と超音波の相互作用による
非線形現象(バイスペクトル)を
目的(洗浄、攪拌、加工、溶接、表面処理、応力緩和処理、検査・・)
に合わせて制御する、具体的なシステム技術を開発しました。
Page4
例
標準システム(水槽内の液量 2000リットルまでの場合)
超音波とファインバブルで表面改質処理した水槽
(水槽材質は、ステンレスでも、ガラス・塩ビ・アクリル・・でも可能)
脱気ファインバブル発生液循環装置 1台 ONOF制御
ベースとなる超音波振動子 1台 ONOFF制御
40kHz 600W(出力10W~400W)
メガヘルツの超音波発振制御プローブ 2本
メガヘルツの超音波発振制御プローブ1 パルス発振
1~20MHz(出力15W)
メガヘルツの超音波発振制御プローブ2 スイープ発振
1~20MHz(出力15W)
Page5
例
標準システム
(水槽内の液量が
2000リットルを超え、6000リットル以下の場合)
超音波とファインバブルで表面改質処理したステンレス水槽
(液循環を考慮した水槽設計が望まれる
オーバーフロー水槽構造により、塩ビ水槽での対応も可能)
脱気ファインバブル発生液循環装置 2台 ONOF制御
(ONOFF制御は個別設定)
ベースとなる超音波振動子 2台 ONOFF制御
40kHz 600W(出力80W~300W)
28kHz 600W(出力30W~200W)
メガヘルツの超音波発振制御プローブ 4本
メガヘルツの超音波発振制御プローブ1 パルス発振
13MHz(出力10W)
メガヘルツの超音波発振制御プローブ2 スイープ発振
3~18MHz(出力10W)
メガヘルツの超音波発振制御プローブ3 パルス発振
14.3MHz(出力10W)
メガヘルツの超音波発振制御プローブ4 スイープ発振
500kHz~13.5MHz(出力10W)
Page6
実施例
超音波の伝搬状態の測定・解析技術を利用した結果、
1)50次以上の高調波の制御を実現
2)20kHz以下の共振現象と非線形現象を
利用目的に合わせて最適化
(精密洗浄では非線形現象を優先
バラツキの多い対象の分散では、開始時は共振現象を優先
対象が小さくなるにつれて、非線形現象を優先
一定のレベルになった後は、
共振現象と非線形現象をバランス良く変化させる
機械加工では、装置の振動モードに合わせて、
共振現象と非線形現象の変化の範囲を最適化・調整する)
表面改質処理
Page10
超音波システム研究所
メールアドレス info@ultrasonic-labo.com
Page11
水槽と超音波と液循環に関する最適化・評価技術
http://ultrasonic-labo.com/?p=7277
超音波とファインバブル(マイクロバブル)による洗浄技術
http://ultrasonic-labo.com/?p=18101 以上