1/17ページ
ダウンロード(2.8Mb)
超音波の伝搬特性(非線形特性、応答特性、ゆらぎの特性、相互作用)
超音波システム研究所は、
超音波伝搬現象の分類に基づいた、
500Hzから100MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を開発しました。
目的に合わせた、
オリジナル超音波発振制御プローブを製造開発が可能です。
ポイントは、超音波プローブの超音波伝搬特性の確認です。
超音波のダイナミックな変化に対する、応答特性が最も重要です。
この特性により、高調波の発生可能範囲が決定します。
現状では、以下の範囲に対して、製造対応可能となっています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~200MHz
発振範囲 1.0kHz~25MHz
伝搬範囲 0.5kHz~900MHz以上(音圧データの解析確認)
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
測定機器 例 オシロスコープ
<材質・形状・構造・・・による音響特性>を
把握(測定・解析・評価)することで、
目的に合わせた超音波の伝搬状態を実現します
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への応用実績により、
この技術を公開することにしました。
この技術を、コンサルティング提供します
興味のある方はメールでお問い合わせください
関連メディア
このカタログについて
ドキュメント名 | オリジナル超音波プローブのダイナミック特性を評価する技術-Ver2 |
---|---|
ドキュメント種別 | 製品カタログ |
ファイルサイズ | 2.8Mb |
登録カテゴリ | |
取り扱い企業 | 超音波システム研究所 (この企業の取り扱いカタログ一覧) |
この企業の関連カタログ
このカタログの内容
Page1
オリジナル超音波プローブのダイナミック特性を評価する技術
超音波の伝搬特性(非線形特性、応答特性、ゆらぎの特性、相互作用)
超音波システム研究所は、
超音波伝搬現象の分類に基づいた、
500Hzから100MHzの超音波伝搬状態を制御可能にする
超音波プローブの製造技術を開発しました。
目的に合わせた、
オリジナル超音波発振制御プローブを製造開発が可能です。
ポイントは、超音波プローブの超音波伝搬特性の確認です。
超音波のダイナミックな変化に対する、応答特性が最も重要です。
この特性により、高調波の発生可能範囲が決定します。
現状では、以下の範囲に対して、製造対応可能となっています。
超音波プローブ:概略仕様
測定範囲 0.01Hz~300MHz
発振範囲 0.5kHz~100MHz
材質 ステンレス、LCP樹脂、シリコン、テフロン、ガラス・・・
発振機器 例 ファンクションジェネレータ
<材質・形状・構造・・・による音響特性>を
把握(測定・解析・評価)することで、
目的に合わせた超音波の伝搬状態を実現します
Page2
超音波伝搬状態の測定・解析・評価技術に基づいた、
精密洗浄・加工・攪拌・検査・・への応用実績により、
この技術を公開することにしました。
この技術を、コンサルティング提供します
興味のある方はメールでお問い合わせください
Page3
各種部材(ガラス容器・・)の音響特性(表面弾性波)の利用により
20W以下の超音波出力で、5000リッターの水槽でも、
数トンの構造物、工作機械、各種製造ライン・・・・への
超音波刺激による効果を確認しています。
弾性波動に関する工学的(実験・技術)な視点と
抽象代数学の超音波モデルにより
非線形現象のコントロール・応用方法として開発しました。
Page4
ポイントは
超音波素子表面の表面弾性波利用技術です、
対象物の条件(材質・形状・構造・サイズ・数量・・)・・により
超音波の伝搬特性を確認(注1)することで、
オリジナル非線形共振現象(注2、3)として
対処することが重要です
注1:超音波の伝搬特性
非線形特性(バイスペクトル解析)
応答特性(インパルス応答解析)
ゆらぎの特性(1/f解析)
相互作用による影響(パワー寄与率の解析)
注2:オリジナル非線形共振現象
オリジナル発振制御により発生する高調波の発生を
共振現象により高い振幅に実現させたことで起こる
超音波振動の共振現象
注3:過渡超音応力波
変化する系における、ダイナミック加振と応答特性の確認
時間経過による、減衰特性、相互作用の変化を確認
上記に基づいた、過渡超音応力波の解析評価
Page5
<<特許申請>>
特開 2021-125866 超音波制御(超音波発振制御プローブ)
特開 2021-159990 超音波溶接
特開 2021-161532 超音波めっき
特開 2021-171909 超音波加工
特開 2021-175568 流水式超音波洗浄
超音波発振制御プローブの製造技術の一部は
特開 2021-125866 に記載しています
この技術を、コンサルティング提供します
興味のある方はメールでお問い合わせください
Page6
参考動画
https://youtu.be/jKjj5w6iHvc
https://youtu.be/gajnES07RBo
https://youtu.be/Go9yYi_a5fc
https://youtu.be/Nw5XsbhO9Lk
https://youtu.be/rEQt5b7_A00
https://youtu.be/970IXK9S6W8
https://youtu.be/HgHlRKmRoaY
https://youtu.be/gMP6LzCy6EU
Page7
https://youtu.be/3Jri1KRmmwA
https://youtu.be/q4400-Z89_A
https://youtu.be/mzF4NiucJ6U
https://youtu.be/BqQu_z7jaOk
https://youtu.be/YE1IAWqjiuQ
https://youtu.be/-_UbUmANrjs
https://youtu.be/2N-Eq2erI9c
Page8
https://youtu.be/alzcr_bSxKw
https://youtu.be/CQi_3KHZgsk
https://youtu.be/zQ0H60K3snA
https://youtu.be/fE4UO9OzYjo
https://youtu.be/nASnksLpo3s
Page9
<超音波伝搬特性(音響特性)の分類>
1:線形型
2:非線形型
3:ミックス型
4:ダイナミック変動型
( 4-1:線形変動型 4-2:非線形変動型 4-3:ミックス変動型 )
この分類を、超音波利用目的に合わせて
発振制御条件(スイープ発振条件)として設定します。
環境・条件・・により
複数の発振を組み合わせる場合も同様ですが
相互作用に対する測定確認が不十分だと
ダイナミックな非線形現象は発生しません。
Page10
分類の詳細
1:線形型(キャビテーション主体型)
超音波の発振周波数に対して
伝搬状態の主要(最大エネルギー)周波数が
低調波(発振周波数の1/4、あるいは1/2)
から高調波(発振周波数の1倍、・・3倍)の範囲で
若干の変化がある状態
注:低調波(発振周波数の1/8)以下の場合
低周波の共振状態により、不安定な共振と干渉が発生し
安定した状態が実現しない傾向になります
2:非線形型(音響流主体型)
超音波の発振周波数に対して
伝搬状態の主要(最大エネルギー)周波数が
高調波(発振周波数10倍以上)の範囲で
若干の変化がある状態
注:高調波は、超音波振動子、発振プローブ・・の
表面状態の工夫(特願2020-31017 超音波制御)により
発振周波数の100倍を実現することも可能です
3:ミックス型(キャビテーションと音響流の組み合わせ型)
超音波発振部材の設置方法や接触部材・・・の相互作用により
発振周波数に対して
伝搬状態の主要(最大エネルギー)周波数が
低調波(発振周波数の1/8,1/4、あるいは1/2)
から高調波(発振周波数の1倍、・・10倍)の範囲で
自然に発生する、大きな変化がある状態
コメント
上記の1,2,3は、基本的な伝搬状態ですが
振動現象が、安定して長時間同じ現象を続けるためには、各種制御・・工夫が必要です
上記の1,2,3は、単調な発振状態を継続すると
周波数の低下や超音波の減衰現象が発生し
超音波の利用効果は小さく、無くなっていきます
そのために、実用的には、変動型を利用することが必要です
Page11
4:変動型(各種制御による変化を利用するタイプ)
4-1:線形変動型
複数の超音波発振部材や発振制御・・を利用して
伝搬状態の主要(最大エネルギー)周波数が
低調波から高調波を、
目的の範囲(発振周波数の1/8~10倍程度)で
制御可能にした状態
4-2:非線形変動型
複数の超音波発振部材や発振制御・・を利用して
伝搬状態の主要(最大エネルギー)周波数が
低調波から高調波を、
目的の範囲(発振周波数の1/2~50倍程度)で
制御可能にした状態
4-3:ミックス変動型(ダイナミック変動型)
複数の超音波発振部材や発振制御・・の
音響特性や相互作用の確認に基づいて
伝搬状態の主要(最大エネルギー)周波数が
低調波から高調波を、
目的の範囲(発振周波数の1/16~100倍程度)で
制御可能にした状態
Page12
超音波発振システム(20MHz)の製造販売
http://ultrasonic-labo.com/?p=1648
超音波プローブ(発振型、測定型、共振型、非線形型)の製造技術
http://ultrasonic-labo.com/?p=1566
超音波制御技術
http://ultrasonic-labo.com/?p=16309
メガヘルツの超音波発振制御プローブ
http://ultrasonic-labo.com/?p=14570
メガヘルツの超音波を利用する超音波システム技術
http://ultrasonic-labo.com/?p=14350
Page13
超音波プローブ
http://ultrasonic-labo.com/?p=11267
超音波プローブ(音圧測定・非線形振動解析)
http://ultrasonic-labo.com/?p=1263
超音波プローブによる
<メガヘルツの超音波発振制御>技術
http://ultrasonic-labo.com/?p=1811
液晶樹脂による<メガヘルツの超音波制御>技術
http://ultrasonic-labo.com/?p=14210
超音波と表面弾性波
http://ultrasonic-labo.com/?p=14264
超音波<発振制御>技術
http://ultrasonic-labo.com/?p=5267
Page14
表面弾性波の利用技術
http://ultrasonic-labo.com/?p=7665
超音波の非線形現象をコントロールする技術
http://ultrasonic-labo.com/?p=14878
超音波洗浄器による<メガヘルツの超音波>技術を開発
http://ultrasonic-labo.com/?p=1879
オリジナル超音波実験
http://ultrasonic-labo.com/?p=17535
超音波伝搬現象の分類1
http://ultrasonic-labo.com/?p=10908
超音波伝搬現象の分類2
http://ultrasonic-labo.com/?p=17496
Page15
超音波伝搬現象の分類3
http://ultrasonic-labo.com/?p=17540
超音波の最適化技術1
http://ultrasonic-labo.com/?p=15226
超音波の最適化技術2
http://ultrasonic-labo.com/?p=16557
超音波制御技術
http://ultrasonic-labo.com/?p=16309
超音波を利用した「振動計測技術」
http://ultrasonic-labo.com/?p=16046
超音波プローブの発振制御による振動評価技術
http://ultrasonic-labo.com/?p=15285
Page16
超音波技術:多変量自己回帰モデルによるフィードバック解析
http://ultrasonic-labo.com/?p=15785
統計的な考え方を利用した超音波
http://ultrasonic-labo.com/?p=12202
超音波の非線形振動
http://ultrasonic-labo.com/?p=13908
超音波<測定・解析>システム
http://ultrasonic-labo.com/?p=1000
超音波洗浄に関する非線形制御技術
http://ultrasonic-labo.com/?p=1497
非線形共振型超音波発振プローブ 実験動画
http://ultrasonic-labo.com/?p=15065
Page17
超音波システム(音圧測定解析、発振制御)
http://ultrasonic-labo.com/?p=19422
メガヘルツ超音波による表面改質処理
http://ultrasonic-labo.com/?p=2433
超音波技術資料(アペルザカタログ)
http://ultrasonic-labo.com/?p=8496
【本件に関するお問合せ先】
超音波システム研究所
メールアドレス info@ultrasonic-labo.com
ホームページ http://ultrasonic-labo.com/ 以上